Skip to main content

Advertisement

Log in

The Immune Pathogenesis of Multiple Sclerosis

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) that leads to changes of nerve conduction due to damage of CNS– resident cells, primarily oligodendrocytes and neurons. CD4+ T cells are of primary importance in the immune cascades leading to tissue damage, but also CD8+ T cells, NK cells and B cells and antibodies contribute to tissue damage. In addition, the innate immune response and mainly microglial cells participate in the events leading to lesions. There are different types of MS and possibly this is due to different underlying immune mechanisms. The current treatment options mainly affect the immune response but have not much influence on secondary signaling changes in astrocytes and neurons which contribute to constant disease progression. The immune response in MS must be seen in the systemic context and there are strong indications that the gut and lung immunity affect MS disease precipitation. The strongest genetic influence in MS is mediated by the HLA class II genes and in Western Europeans and North Americans the disease is associated with HLA–DR2b. Possibly this is due to presentation of a set of specific antigens in context of this HLA allele. Novel data indicates that the immune response in MS is not only focused on certain myelin proteins like myelin basic protein (MBP) but to additional astrocytic and neuronal proteins, which is also mirrored in the pathology. While in the past the disease has been considered as mainly a white matter disease, nowadays it is clear that also grey matter is affected by the aberrant immune response. Still much needs to be learned regarding the underlying events in MS. This expanded knowledge is important to finally discover curative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arun T, Tomassini V, Sbardella E, de Ruiter MB, Matthews L, Leite MI, Gelineau-Morel R, Cavey A, Vergo S, Craner M, Fugger L, Rovira A, Jenkinson M, Palace J (2013) Targeting ASIC1 in primary progressive multiple sclerosis: evidence of neuroprotection with amiloride. Brain 136:106–115

    PubMed  Google Scholar 

  • Barcellos LF, Sawcer S, Ramsay PP, Baranzini SE, Thomson G, Briggs F, Cree BC, Begovich AB, Villoslada P, Montalban X, Uccelli A, Savettieri G, Lincoln RR, DeLoa C, Haines JL, Pericak-Vance MA, Compston A, Hauser SL, Oksenberg JR (2006) Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 15:2813–2824

    Article  PubMed  CAS  Google Scholar 

  • Becher B, Prat A, Antel JP (2000) Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29:293–304

    Article  PubMed  CAS  Google Scholar 

  • Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541

    Article  PubMed  CAS  Google Scholar 

  • Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, Lee S, Plavina T, Scanlon JV, Sandrock A, Bozic C (2012) Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med 366:1870–1880

    Article  PubMed  CAS  Google Scholar 

  • Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bo L (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Muzio L, Rossi S, Furlan R, Bernardi G, Martino G (2010) The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ 17:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Cheng MH, Anderson MS (2012) Monogenic autoimmunity. Annu Rev Immunol 30:393–427

    Article  PubMed  CAS  Google Scholar 

  • Compston A (1999) The genetic epidemiology of multiple sclerosis. Phil Trans Roy Soc Lond B Biol Sci 354:1623–1634

    Article  CAS  Google Scholar 

  • de Graaf KL, Weissert R, Kjellen P, Holmdahl R, Olsson T (1999) Allelic variations in rat MHC class II binding of myelin basic protein peptides correlate with encephalitogenicity. Int Immunol 11:1981–1988

    Article  PubMed  Google Scholar 

  • de Graaf KL, Albert M, Weissert R (2012) Autoantigen conformation influences both B- and T-cell responses and encephalitogenicity. J Biol Chem 287:17206–17213

    Article  PubMed  Google Scholar 

  • Delmotte P (1971) Gel isoelectric focusing of cerebrospinal fluid proteins: a potential diagnostic tool. Z Klin Chem Klin Biochem 9:334–336

    PubMed  CAS  Google Scholar 

  • Ebers GC (2008) Environmental factors and multiple sclerosis. Lancet Neurol 7:268–277

    Article  PubMed  Google Scholar 

  • Fissolo N, Haag S, de Graaf KL, Drews O, Stevanovic S, Rammensee HG, Weissert R (2009) Naturally presented peptides on major histocompatibility complex I and II molecules eluted from central nervous system of multiple sclerosis patients. Mol Cell Proteomics 8:2090–2101

    Article  PubMed  CAS  Google Scholar 

  • Forsthuber TG, Shive CL, Wienhold W, de Graaf K, Spack EG, Sublett R, Melms A, Kort J, Racke MK, Weissert R (2001) T cell epitopes of human myelin oligodendrocyte glycoprotein identified in HLA-DR4 (DRB1*0401) transgenic mice are encephalitogenic and are presented by human B cells. J Immunol 167:7119–7125

    PubMed  CAS  Google Scholar 

  • Garg SK, Banerjee R, Kipnis J (2008) Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 180:3866–3873

    PubMed  CAS  Google Scholar 

  • Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT, Investigators DS (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367:1098–1107

    Article  PubMed  CAS  Google Scholar 

  • Grewal IS, Foellmer HG, Grewal KD, Wang H, Lee WP, Tumas D, Janeway CA Jr, Flavell RA (2001) CD62L is required on effector cells for local interactions in the CNS to cause myelin damage in experimental allergic encephalomyelitis. Immunity 14:291–302

    Article  PubMed  CAS  Google Scholar 

  • Haring JS, Pewe LL, Perlman S (2002) Bystander CD8 T cell-mediated demyelination after viral infection of the central nervous system. J Immunol 169:1550–1555

    PubMed  CAS  Google Scholar 

  • Harkiolaki M, Holmes SL, Svendsen P, Gregersen JW, Jensen LT, McMahon R, Friese MA, van Boxel G, Etzensperger R, Tzartos JS, Kranc K, Sainsbury S, Harlos K, Mellins ED, Palace J, Esiri MM, van der Merwe PA, Jones EY, Fugger L (2009) T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30:348–357

    Article  PubMed  CAS  Google Scholar 

  • Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Krapf H, Zwingers T, Mitoxantrone in Multiple Sclerosis Study G (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018

    Article  PubMed  Google Scholar 

  • Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, Langer-Gould A, Smith CH (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  PubMed  CAS  Google Scholar 

  • Hedstrom AK, Sundqvist E, Baarnhielm M, Nordin N, Hillert J, Kockum I, Olsson T, Alfredsson L (2011) Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain 134:653–664

    Article  PubMed  Google Scholar 

  • Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H, Fallier-Becker P, Noell S, Lennon VA (2012) Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A 109:1245–1250

    Article  PubMed  CAS  Google Scholar 

  • International Multiple Sclerosis Genetics C et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Article  Google Scholar 

  • Jacob A, Weinshenker BG, Violich I, McLinskey N, Krupp L, Fox RJ, Wingerchuk DM, Boggild M, Constantinescu CS, Miller A, De Angelis T, Matiello M, Cree BA (2008) Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol 65:1443–1448

    Article  PubMed  Google Scholar 

  • Jacobs LD et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol 39:285–294

    Article  PubMed  CAS  Google Scholar 

  • Ji Q, Perchellet A, Goverman JM (2010) Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat Immunol 11:628–634

    Article  PubMed  CAS  Google Scholar 

  • Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Myers LW, Panitch HS, Rose JW, Schiffer RB (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45:1268–1276

    Article  PubMed  CAS  Google Scholar 

  • Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P, Group FS (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362:387–401

    Article  PubMed  CAS  Google Scholar 

  • Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z (2006) Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177:7750–7760

    PubMed  CAS  Google Scholar 

  • Keegan M, Konig F, McClelland R, Bruck W, Morales Y, Bitsch A, Panitch H, Lassmann H, Weinshenker B, Rodriguez M, Parisi J, Lucchinetti CF (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579–582

    Article  PubMed  Google Scholar 

  • Kleiter I, Hellwig K, Berthele A, Kumpfel T, Linker RA, Hartung HP, Paul F, Aktas O, Neuromyelitis Optica Study G (2012) Failure of natalizumab to prevent relapses in neuromyelitis optica. Arch Neurol 69:239–245

    Article  PubMed  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    Article  PubMed  Google Scholar 

  • Lauterbach H, Zuniga EI, Truong P, Oldstone MB, McGavern DB (2006) Adoptive immunotherapy induces CNS dendritic cell recruitment and antigen presentation during clearance of a persistent viral infection. J Exp Med 203:1963–1975

    Article  PubMed  CAS  Google Scholar 

  • Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112

    Article  PubMed  CAS  Google Scholar 

  • Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, Bruck W, Parisi JE, Scheithauer BW, Giannini C, Weigand SD, Mandrekar J, Ransohoff RM (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197

    Article  PubMed  CAS  Google Scholar 

  • Martin R, Howell MD, Jaraquemada D, Flerlage M, Richert J, Brostoff S, Long EO, McFarlin DE, McFarland HF (1991) A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173:19–24

    Article  PubMed  CAS  Google Scholar 

  • McElroy JP, Isobe N, Gourraud PA, Caillier SJ, Matsushita T, Kohriyama T, Miyamoto K, Nakatsuji Y, Miki T, Hauser SL, Oksenberg JR, Kira J (2011) SNP-based analysis of the HLA locus in Japanese multiple sclerosis patients. Genes Immun 12:523–530

    Article  PubMed  CAS  Google Scholar 

  • Min JH, Kim BJ, Lee KH (2012) Development of extensive brain lesions following fingolimod (FTY720) treatment in a patient with neuromyelitis optica spectrum disorder. Mult Scler 18:113–115

    Article  PubMed  CAS  Google Scholar 

  • Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, Perry VH, Newman TA (2011) Systemic inflammation induces axon injury during brain inflammation. Ann Neurol 70:932–942

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, Benzerdjeb H, Truffinet P, Wang L, Miller A, Freedman MS, Group TT (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365:1293-1303

    Article  PubMed  Google Scholar 

  • Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C, Lodygin D, Heckelsmiller K, Nietfeld W, Ellwart J, Klinkert WE, Lottaz C, Nosov M, Brinkmann V, Spang R, Lehrach H, Vingron M, Wekerle H, Flugel-Koch C, Flugel A (2012) T cells become licensed in the lung to enter the central nervous system. Nature 488:675–679

    Article  PubMed  CAS  Google Scholar 

  • Pesic MBI, Kyratsous NI, Heissmeyer V, Wekerle H, Kawakami N (2013) 2-photon imaging of phagocyte-mediated T cell activation in the CNS. J Clin Invest 123:1191–1201

    Article  Google Scholar 

  • Peterson JW, Bo L, Mork S, Chang A, Trapp BD (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  PubMed  CAS  Google Scholar 

  • Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, Investigators A (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  PubMed  CAS  Google Scholar 

  • Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    Article  PubMed  Google Scholar 

  • Popescu BF, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annu Rev Pathol 7:185–217

    Article  PubMed  CAS  Google Scholar 

  • Probstel AK et al (2011) Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology 77:580–588

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, Manz MG (2013) Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol 31:635–674

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Impellizzieri D, Basso C, Laroni A, Uccelli A, Lanzavecchia A, Engelhardt B (2012) T-cell trafficking in the central nervous system. Immunol Rev 248:216–227

    Article  PubMed  Google Scholar 

  • Salzer J, Hallmans G, Nystrom M, Stenlund H, Wadell G, Sundstrom P (2012) Vitamin D as a protective factor in multiple sclerosis. Neurology 79:2140–2145

    Article  PubMed  CAS  Google Scholar 

  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174

    Article  PubMed  Google Scholar 

  • Shimizu Y, Yokoyama K, Misu T, Takahashi T, Fujihara K, Kikuchi S, Itoyama Y, Iwata M (2008) Development of extensive brain lesions following interferon beta therapy in relapsing neuromyelitis optica and longitudinally extensive myelitis. J Neurol 255:305–307

    Article  PubMed  Google Scholar 

  • Sholl-Franco A, Marques PM, Ferreira CM, de Araujo EG (2002) IL-4 increases GABAergic phenotype in rat retinal cell cultures: involvement of muscarinic receptors and protein kinase C. J Neuroimmunol 133:20–29

    Article  PubMed  CAS  Google Scholar 

  • Sorensen PS, Bertolotto A, Edan G, Giovannoni G, Gold R, Havrdova E, Kappos L, Kieseier BC, Montalban X, Olsson T (2012) Risk stratification for progressive multifocal leukoencephalopathy in patients treated with natalizumab. Mult Scler 18:143–152

    Article  PubMed  Google Scholar 

  • Storch MK, Bauer J, Linington C, Olsson T, Weissert R, Lassmann H (2006) Cortical demyelination can be modeled in specific rat models of autoimmune encephalomyelitis and is major histocompatability complex (MHC) haplotype-related. J Neuropathol Exp Neurol 65:1137–1142

    Article  PubMed  CAS  Google Scholar 

  • `t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17:119–125

    Article  CAS  Google Scholar 

  • The IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter randomized, double-blind, placebo-controlled trial. Neurology 43:655-661

    Google Scholar 

  • Tien-Hsiang Chen J, Easley K, Schneider C, Nakamura K, Kidd GJ, Chang A, Staugaitis SM, Fox RJ, Fisher E, Arnold DL, Trapp BD (2012) Clinically feasible MTR is sensitive to cortical demyelination in MS. Neurology 30:246–252

    Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  • Uze G, Schreiber G, Piehler J, Pellegrini S (2007) The receptor of the type I interferon family. Curr Top Microbiol Immunol 316:71–95

    Article  PubMed  CAS  Google Scholar 

  • Weissert R (2011) Progressive multifocal leukoencephalopathy. J Neuroimmunol 231:73–77

    Article  PubMed  CAS  Google Scholar 

  • Weissert R (2012) Experimental Autoimmune Encephalomyelitis. DOI 10.5772/29792: 1–19. In “Experimental Autoimmune Encephalomyelitis - Models, Disease Biology and Experimental Therapy”, book edited by Robert Weissert, ISBN 978-953-51-0038-6

  • Weissert R, Svenningsson A, Lobell A, de Graaf KL, Andersson R, Olsson T (1998a) Molecular and genetic requirements for preferential recruitment of TCRBV8S2+ T cells in Lewis rat experimental autoimmune encephalomyelitis. J Immunol 160:681–690

    PubMed  CAS  Google Scholar 

  • Weissert R, Wallstrom E, Storch MK, Stefferl A, Lorentzen J, Lassmann H, Linington C, Olsson T (1998b) MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Weissert R, Kuhle J, de Graaf KL, Wienhold W, Herrmann MM, Muller C, Forsthuber TG, Wiesmuller KH, Melms A (2002) High immunogenicity of intracellular myelin oligodendrocyte glycoprotein epitopes. J Immunol 169:548–556

    PubMed  CAS  Google Scholar 

  • Weller RO, Engelhardt B, Phillips MJ (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 6:275–288

    Article  PubMed  CAS  Google Scholar 

  • WHO (2008) Atlas of multiple sclerosis resources in the world 2008, 1st edn. WHO Press, Geneva

    Google Scholar 

  • Wingerchuk DM, Weinshenker BG (2005) Neuromyelitis optica. Curr Treat Options Neurol 7:173–182

    Article  PubMed  Google Scholar 

  • Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66:1485–1489

    Article  PubMed  CAS  Google Scholar 

  • Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

R.W. declares no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Weissert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissert, R. The Immune Pathogenesis of Multiple Sclerosis. J Neuroimmune Pharmacol 8, 857–866 (2013). https://doi.org/10.1007/s11481-013-9467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9467-3

Keywords

Navigation