Skip to main content
Log in

A Simple Design of a Multi-Band Terahertz Metamaterial Absorber Based on Periodic Square Metallic Layer with T-Shaped Gap

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a multi-band terahertz absorber formed by periodic square metallic ribbon with T-shaped gap and a metallic ground plane separated by a dielectric layer. It is demonstrated that absorption spectra of the proposed structure consist of four absorption peaks located at 1.12, 2.49, 3.45, and 3.91 THz with high absorption coefficients of 98.0, 98.9, 98.7, and 99.6%, respectively. It is demonstrated that the proposed absorber has the tunability from single-band to broadband by changing the length of square metallic ribbon and we can also select or tune the frequencies which we want to use by changing polarization angles. Importantly, the quality factor Q at 3.91 THz is 30.1, which is 5.6 times higher than that of 1.12 THz. These results indicate that the proposed absorber has a promising potential for devices, such as detection, sensing, and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pendry JB (2000) Three-dimensional invisibility cloak at optical wavelengths. Phys Rev Lett:85–3966

  2. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792

    Article  CAS  Google Scholar 

  3. Leonhardt U (2006) Optical conformal mapping. Science 312

  4. Liu R, Ji C, Mock JJ (2009) Broadband ground-plane cloak. Science 323(5912):366–369

    Article  CAS  Google Scholar 

  5. Singh PK, Korolev KA, Afsar MN (2011) Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. Appl Phys Lett 99(26):264101

    Article  Google Scholar 

  6. Wu D, Fang N, Sun C (2003) Terahertz plasmonic high pass filter. Appl Phys Lett 83:201–203

    Article  CAS  Google Scholar 

  7. Strikwerda AC, Zalkovskij M, Lorenzen DL (2014) Metamaterial composite bandpass filter with an ultra-broadband rejection bandwidth of up to 240 terahertz. Appl Phys Lett 104:191103

    Article  Google Scholar 

  8. Watts CM, Shrekenhamer D, Montoya J (2014) Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 8:605–609

    Article  CAS  Google Scholar 

  9. Fang X, Tseng ML, Ou JY, MacDonald KF, Tsai DP, Zheludev NI (2014) Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl Phys Lett 104:141102

    Article  Google Scholar 

  10. Ng J, Chen H, Chan CT (2009) Metamaterial frequency-selective superabsorber. Opt Letters 34:644–646

    Article  Google Scholar 

  11. Hao J, Zhou L, Qiu M (2011) Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B 83:165107

    Article  Google Scholar 

  12. Zhou J, Koschny T, Soukoulis CM (2008) An efficient way to reduce losses of left-handed metamaterials. Opt Express 16:11147–11152

    Article  Google Scholar 

  13. Plum E, Fedotov VA, Kuo P (2009) Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt Express 17:8548–8551

    Article  CAS  Google Scholar 

  14. Landy NI, Sajuyigbe S, Mock JJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  15. Kern DJ, Werner DH (2003) A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers. Microwave opt. Technol Lett 38(1):61–64

    Google Scholar 

  16. Ye J, Van Dorpe P (2011) Improvement of figure of merit for gold nanobar array plasmonic sensors. Plasmonics 6(4):665–671

    Article  CAS  Google Scholar 

  17. Liu N, Mesch M, Weiss T (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  18. Liu X, Tyler T, Starr T (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901

    Article  Google Scholar 

  19. Liu X, Starr T, Starr AF (2010) Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett 104:207403

    Article  Google Scholar 

  20. Xiao D, Tao K, Wang Q (2016) Ultrabroadband mid-infrared light absorption based on a multi-cavity plasmonic metamaterial array. Plasmonics 11(2):389–394

    Article  CAS  Google Scholar 

  21. Singh PK, Korolev KA, Afsar MN (2011) Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate. App Phys Lett 99(26):264101

    Article  Google Scholar 

  22. Wang BX (2016) Single-patterned metamaterial structure enabling multi-band perfect absorption. Plasmonics 1–8.

  23. Cui Y, Fung KH, Xu J (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443–1447

    Article  CAS  Google Scholar 

  24. Wen QY, Zhang HW, Xie YS (2009) Dual band terahertz metamaterial absorber: design, fabrication, and characterization. App Phys Lett 95:241111

    Article  Google Scholar 

  25. Wang BX, Wang LL, Wang GZ (2014) A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber. Appl Phys A Mater Sci Process 115:1187–1192

    Article  CAS  Google Scholar 

  26. Chen HT (2012) Interference theory of metamaterial perfect absorbers. Opt Express 20:7165–7172

    Article  Google Scholar 

  27. Mulla B, Sabah C (2016) Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 1–9.

  28. Grant J, Ma Y, Saha S (2011) Polarization insensitive, broadband terahertz metamaterial absorber. Opt Lett:3476–3478

  29. Ma Y, Chen Q, Grant J (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Letters 36(6):945–947

    Article  Google Scholar 

  30. Shen X, Cui TJ, Zhao J (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19(10):9401–9407

    Article  CAS  Google Scholar 

  31. Shen X, Yang Y, Zang Y (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101(15):154102

    Article  Google Scholar 

  32. Park JW, Van Tuong P, Rhee JY (2013) Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt Express 21(8):9691–9702

    Article  Google Scholar 

  33. Zhang B, Hendrickson J, Guo J (2013) Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures. JOSA B 30(3):656–662

    Article  Google Scholar 

  34. Huang L, Chowdhury DR, Ramani S (2012) Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl Phys Lett 101(10):101102

    Article  Google Scholar 

  35. Liu N, Fu L, Kaiser S (2008) Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials. Adv Mater 20:3859–3865

    Article  CAS  Google Scholar 

  36. Liu N, Guo H, Fu L (2007) Plasmon hybridization in stacked cut-wire metamaterials. Adv Mater 19:3628–3632

    Article  CAS  Google Scholar 

  37. Ye YQ, Jin Y, He S (2010) Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B 27(3):498–504

    Article  CAS  Google Scholar 

  38. Zhou J, Zhang L, Tuttle G (2006) Negative index materials using simple short wire pairs. Phys Rev B 73:041101

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61505052, 11074069, 61176116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, HY., Wang, LL., Zhai, X. et al. A Simple Design of a Multi-Band Terahertz Metamaterial Absorber Based on Periodic Square Metallic Layer with T-Shaped Gap. Plasmonics 13, 269–274 (2018). https://doi.org/10.1007/s11468-017-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0509-1

Keywords

Navigation