Skip to main content
Log in

Plasmonic Spectral Engineering via Interferometric Illumination of Colloid Sphere Monolayers

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel method is presented for complex structure fabrication, which is capable of breaking the hexagonal symmetry of the conventional colloid sphere lithography via the interferometric illumination of colloid sphere monolayers (IICSM). It is demonstrated that the perfect lateral synchronization of a linear intensity modulation originating from two-beam interference with respect to a hexagonal colloid sphere monolayer makes it possible to tune four complex structure parameters independently. Based on comparative study of hexagonal and rectangular hole doublet-arrays, which can be generated by linearly polarized light via homogeneous illumination and via IICSM, it is shown that the novel IICSM method enables plasmonic spectral engineering with higher degrees of freedom. The unique spectral properties of the complex patterns attainable via IICSM are more precisely tunable by properly selected azimuthal orientation during illumination and by the surrounding medium. It is shown that coupling phenomena between propagating and localized plasmonic modes on appropriately designed complex structures result in unique charge and near-field distribution accompanied by narrow Fano lines. Optimal configurations of complex plasmonic structures consisting of a rectangular array of hole doublets with different geometrical size parameters are presented, which ensure enhanced sensitivity in bio-detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wannemacher R (2001) Plasmon-supported transmission of light through nanometric holes in metallic thin films. Opt Commun 195:107–118

    Article  CAS  Google Scholar 

  2. Yin L, Vlasko-Vlasov VK, Rydh A, Pearson J, Welp U, Chang S-H, Gray SK, Schatz GC, Brown DB, Kimball CW (2004) Surface plasmons at single nanoholes in Au films. Appl Phys Lett 85(3):467–469

    Article  CAS  Google Scholar 

  3. Degiron A, Lezec HJ, Yamamoto N, Ebbesen TW (2004) Optical transmission properties of a single subwavelength aperture in a real metal. Opt Commun 239:61–66

    Article  CAS  Google Scholar 

  4. Zakharian AR, Mansuripur M, Moloney JV (2004) Transmission of light through small elliptical apertures. Opt Express 12:2631–2648

    Article  CAS  Google Scholar 

  5. Chang S-H, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165

    Article  Google Scholar 

  6. Rindzevicius T, Alaverdyan Y, Sepulveda B, Pakizeh T, Käll M, Hillenbrand R, Aizpurua J, de Abajo FJ G (2007) Nanohole plasmons in optically thin gold films. J Phys Chem C 111:1207–1212

    Article  CAS  Google Scholar 

  7. Sepúlveda B, Alaverdyan Y, Alegret J, Käll M, Johansson P (2008) Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films. Opt Express 16:5609–5616

    Article  Google Scholar 

  8. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  9. Sherry L, Chang S-H, Schatz G, Van Duyne R (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  10. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  11. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58(11):6779–6782

    Article  CAS  Google Scholar 

  12. Thio T, Ghaemi HF, Lezec HJ, Wolff PA, Ebbesen TW (1999) Surface-plasmon-enhanced transmission through hole arrays in Cr films. J Opt Soc Am B 16:1743–1748

    Article  CAS  Google Scholar 

  13. Martín-Moreno L, García-Vidal FJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86(6):1114–1117

    Article  Google Scholar 

  14. Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901

    Article  Google Scholar 

  15. Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92(3):037401

    Article  CAS  Google Scholar 

  16. Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92(10):107401

    Article  CAS  Google Scholar 

  17. Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kall M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4(6):1003–1007

    Article  CAS  Google Scholar 

  18. Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:S90

    Article  Google Scholar 

  19. De Abajo FJG, Gómez-Medina R, Sáenz JJ (2005) Full transmission through perfect-conductor subwavelength hole arrays. Phys Rev E 72:016608

    Article  Google Scholar 

  20. Altewischer E, Genet C, van Exter MP, Woerdman JP, Alkemade PFA, van Zuuk A, van der Drift EWJM (2005) Polarization tomography of metallic nanohole arrays. Opt Lett 30:90–92

    Article  CAS  Google Scholar 

  21. DiMaio JR, Ballato J (2006) Polarization-dependent transmission through subwavelength anisotropic aperture arrays. Opt Express 14:2380–2384

    Article  Google Scholar 

  22. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  23. De Abajo FJG (2007) Light scattering by particle and hole arrays. Rev Mod Phys 79(4):1267–1290

    Article  Google Scholar 

  24. Pacifici D, Lezec HJ, Sweatlock LA, Walters RJ, Atwater HA (2008) Universal optical transmission features in periodic and quasiperiodic hole arrays. Opt Express 16(12):9222–9238

    Article  Google Scholar 

  25. Parsons WJ, Hendry E, Burrows CB, Auquié B, Sambles JR, Barnes WL (2009) Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys Rev B 79(7):073412

    Article  Google Scholar 

  26. Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Rev Mod Phys 82:729–787

    Article  Google Scholar 

  27. Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M, Braun PV, Bhargava R, Rogers JA (2011) Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun 2:479

    Article  Google Scholar 

  28. Genet C, van Exter MP, Woerdman JP (2003) Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt Commun 225:331–336

    Article  CAS  Google Scholar 

  29. Sarrazin M, Vigneron J-P, Vigoureux J-M (2003) Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys Rev B 67:085415

    Article  Google Scholar 

  30. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988

    Article  CAS  Google Scholar 

  31. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9(4):1663–1667

    Article  CAS  Google Scholar 

  32. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  33. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189

    Article  CAS  Google Scholar 

  34. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685

    Article  CAS  Google Scholar 

  35. Rahmani M, Lukiyanchuk B, Ng B, Tavakkoli KGA, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19:4949–4956

    Article  CAS  Google Scholar 

  36. Lassiter JB, Sobhani H, Knight MW, Mielczarek WS, Nordlander P, Halas NJ (2012) Designing and deconstructing the fano lineshape in plasmonic nanoclusters. Nano Lett 12(2):1058–1062

    Article  CAS  Google Scholar 

  37. Stark PR, Halleck AE, Larson DN (2005) Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. Methods 37(1):37–47

    Article  CAS  Google Scholar 

  38. Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen TW (2005) Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys Rev B 71:035424

    Article  Google Scholar 

  39. Tetz KA, Pang L, Fainman Y (2006) High resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31(10):1528–1530

    Article  Google Scholar 

  40. Lesuffleur A, Im H, Lindquist NC, Oh S-H (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90:243110

    Article  Google Scholar 

  41. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41:1049–1057

    Article  CAS  Google Scholar 

  42. Hwang GM, Pang L, Mullen EH, Fainman Y (2008) Plasmonic sensing of biological analytes through nanoholes. IEEE Sensor J 8:2074–2079

    Article  CAS  Google Scholar 

  43. Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB (2011) Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications. Small 12:1653–1663

    Article  Google Scholar 

  44. Zhao X-M, Xia Y, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7(7):1069–1074

    Article  CAS  Google Scholar 

  45. Xia Y, Rogers JA, Paul KE, Whitesides GM (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99(7):1823–1848

    Article  CAS  Google Scholar 

  46. Gates BD, Xu Q, Stewart M, Ryan D, Wilson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  CAS  Google Scholar 

  47. Bauerle D (1996) Laser processing and chemistry. Springer, Berlin

    Book  Google Scholar 

  48. Kelly MK, Dahlheimer B (1996) Extended resolution for lateral structuring with laser interference gratings using high-index input coupling. Phys Status Solidi A 156:k13–k16

    Article  CAS  Google Scholar 

  49. Csete M, Zs B (1998) Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl Surf Sci 133(1–2):5–16

    Article  CAS  Google Scholar 

  50. Daniel C, Mücklich F, Liu Z (2003) Periodical micro-nano-structuring of metallic surfaces by interfering laser beams. Appl Surf Sci 208–209:317–321

    Article  Google Scholar 

  51. Yu F, Li P, Shen H, Mathur S, Lehrb C-M, Bakowsky U, Mücklich F (2005) Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface. Biomaterials 26:2307–2312

    Article  CAS  Google Scholar 

  52. Lim CS, Hong MH, Lin Y, Xie Q, Luk’yanchuk BS, Kumar AS, Rahman M (2006) Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning. Appl Phys Lett 89:191125

    Article  Google Scholar 

  53. Csete M, Kőházi-Kis A, Cs V, Sipos Á, Szekeres G, Deli M, Osvay K, Zs B (2007) Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser based two-beam interference in Au-Ag bimetallic layers. Appl Surf Sci 253(19):7662–7671

    Article  CAS  Google Scholar 

  54. Burmeister F, Schafle C, Matthes T, Böhmisch M, Boneberg J, Leiderer P (1997) Colloid monolayers as versatile lithographic masks. Langmuir 13:2983–2987

    Article  CAS  Google Scholar 

  55. Yu J, Geng C, Zheng L, Ma Z, Tan T, Wang X, Yan Q, Shen D (2012) Preparation of high-quality colloidal mask for nanosphere lithography by a combination of air/water interface self-assembly and solvent vapor annealing. Langmuir 28:12681–12689

    Article  CAS  Google Scholar 

  56. Vogel N, Weiss CK, Landfester K (2012) From soft to hard: the generation of functional and complex colloidal monolayers for nanolithography. Soft Matter 8:4044

    Article  CAS  Google Scholar 

  57. Kuo C-W, Shiu J-Y, Cho Y-H, Chen P (2003) Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks. Adv Mater 15:1064–1068

    Article  Google Scholar 

  58. Cui Y, Björk MT, Liddle JA, Sönnichsen C, Boussert B, Alivisatos AP (2004) Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett 4:1094–1098

    Google Scholar 

  59. Smoukov SK, Gangwal S, Marquez M, Velev OD (2009) Reconfigurable responsive structure assembled from magnetic Janus particles. Soft Matter 5:1285–1292

    Article  CAS  Google Scholar 

  60. Rycenga M, Camargo PHC, Xia Y (2009) Template-assisted self-assembly: a versatile approach to complex micro- and nanostructures. Soft Matter 5:1129–1136

    Article  CAS  Google Scholar 

  61. Nedyalkov NN, Takada H, Obara M (2006) Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles. Appl Phys A 85:163–168

    Article  CAS  Google Scholar 

  62. Nedyalkov N, Sakai T, Miyanishi T, Obara M (2006) Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J Phys D 39:5037

    Article  CAS  Google Scholar 

  63. Atanasov PA, Nedyalkov NN, Sakai T, Obara M (2007) Localization of the electromagnetic field in the vicinity of gold nanoparticles: surface modification of different substrates. Appl Surf Sci 254:794–798

    Article  CAS  Google Scholar 

  64. Csete M, Sipos Á, Szalai A, Szabó G (2012) Theoretical study on interferometric illumination of gold colloid sphere monolayers to produce complex structures for spectral engineering. IEEE Photon J 4(5):1909–1921

    Article  Google Scholar 

  65. Sipos Á, Szalai A, Csete M (2012) Integrated lithography to prepare arrays of rounded nano-objects In: William M Tong, Douglas J. Resnick (ed) Alternative Lithographic Technologies IV., Proceedings of SPIE 8323, SPIE-The International Society for Optical Engineering. SPIE, Belingham, WA, pp. 83232E-1-83232E-10

  66. Sipos Á, Szalai A, Csete M (2013) Integrated lithography to prepare periodic arrays of nano-objects. Appl Surf Sci 278(1):330–335

    Article  CAS  Google Scholar 

  67. Born M, Wolf E (1986) Principles of optics. Pergamon Press, Oxford

    Google Scholar 

  68. Bass M (ed) (1995) Handbook of optics, 2nd edn. McGraw & Hill, New York

    Google Scholar 

  69. Palik E (ed) (1998) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

Download references

Acknowledgments

The publication has been supported by the European Union and co-funded by the European Social Funds, with a project title “Impulse lasers for use in materials science and biophotonics” and a project number TÁMOP-4.2.2.A-11/1/KONV-2012-0060 and project title “Supercomputer, the national virtual lab” and project number TÁMOP-4.2.2.C/11/1/KONV/2012-0010.

Áron Sipos contributed to the paper by preparing the models, realizing computations, and analyzing the results; Anikó Somogyi contributed to the paper by determining the charge distribution and analyzing the near-field distribution; Gábor Szabó contributed to the initial concept of the paper by suggesting the application of two-beam interference; Mária Csete contributed to the paper with the concept of IICSM, interpreted the results, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Csete.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 0.99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipos, Á., Somogyi, A., Szabó, G. et al. Plasmonic Spectral Engineering via Interferometric Illumination of Colloid Sphere Monolayers. Plasmonics 9, 1207–1219 (2014). https://doi.org/10.1007/s11468-014-9732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9732-1

Keywords

Navigation