Article

Plasmonics

, Volume 1, Issue 2, pp 135-140

Optical Extinction Spectroscopy of Oblate, Prolate and Ellipsoid Shaped Gold Nanoparticles: Experiments and Theory

  • Johan GrandAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique
  • , Pierre-Michel AdamAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique
  • , Anne-Sophie GrimaultAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique
  • , Alexandre VialAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique
  • , Marc Lamy de la ChapelleAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique
  • , Jean-Louis BijeonAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique Email author 
  • , Sergei KostcheevAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique
  • , Pascal RoyerAffiliated withInstitut Charles Delaunay – Université de technologie de Troyes CNRS FRE 2848 – Laboratoire de Nanotechnologie et d’Instrumentation Optique

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Localized Surface Plasmons (LSP) on metallic nanoparticles of different shapes are investigated by extinction spectroscopy. Experimental results are compared to simulations by a Finite-Difference Time-Domain (FDTD) method. Three different shapes of nanoparticles are compared, oblates, prolates and ellipsoids, in terms of spectral tunability of the LSP resonance (LSPR). It is found that the complete geometry of the nanoparticle must be given to truly define the LSP resonance and that ellipsoids offer the widest spectral tunability.

Key words

Electron beam lithography FDTD Metallic nanoparticles Surface plasmons

PACS

78.67.Bf 7145.Gm