Skip to main content
Log in

Heisenberg, uncertainty, and the scanning tunneling microscope

  • Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of the density of electron charge as a statistical quantity leads to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e., in principle precisely measurable quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett., 1982, 49(1): 57

    Article  ADS  Google Scholar 

  2. G. Binnig and H. Rohrer, Rev. Mod. Phys., 1987, 59(3): 615

    Article  ADS  Google Scholar 

  3. E. J. Heller, M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature, 1994, 394(6480): 464

    Article  ADS  Google Scholar 

  4. H. Gawronski, M. Mehlhorn, and K. Morgenstern, Science, 2008, 319(5865): 930

    Article  ADS  Google Scholar 

  5. N. Néel, J. Kröger, L. Limot, K. Palotas, W. A. Hofer, and R. Berndt, Phys. Rev. Lett., 2007, 98(1): 016801

    Article  ADS  Google Scholar 

  6. K. R. Harikumar, T. Lim, I. R. McNab, J. C. Polanyi, L. Zotti, S. Ayissi, and W. A. Hofer, Nat. Nanotechnol., 2008, 3(4): 222

    Article  Google Scholar 

  7. W. A. Hofer, A. S. Foster, and A. L. Shluger, Rev. Mod. Phys., 2003, 75(4): 1287

    Article  ADS  Google Scholar 

  8. Z. T. Deng, H. Lin, W. Ji, L. Gao, X. Lin, Z. H. Cheng, X. B. He, J. L. Lu, D. X. Shi, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2006, 96(15): 156102

    Article  ADS  Google Scholar 

  9. J. Tersoff and D. R. Hamann, Phys. Rev. B, 1985, 31(2): 805

    Article  ADS  Google Scholar 

  10. K. H. Rieder, G. Meyer, S.W. Hla, F. Moresco, K. F. Braun, K. Morgenstern, J. Repp, S. Foelsch, and L. Bartels, Philos. Trans. R. Soc. Lond. A, 2004, 362(1819): 1207

    Article  ADS  Google Scholar 

  11. P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136(3B): B864

    Article  MathSciNet  ADS  Google Scholar 

  12. W. Kohn and L. J. Sham, Phys. Rev., 1965, 140(4A): A1133

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Born, Zeitschr. F. Phys., 1926, 37(12): 863

    Article  ADS  Google Scholar 

  14. M. Born, Zeitschr. F. Phys., 1926, 38: 803

    Article  ADS  Google Scholar 

  15. W. Heisenberg, Zeitschr. F. Phys., 1927, 43: 172

    Article  ADS  Google Scholar 

  16. W. A. Hofer, Found. Phys., 2011, 41(4): 754

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. E. Schrödinger, Phys. Rev., 1926, 28(6): 1049

    Article  ADS  Google Scholar 

  18. W. Heisenberg, Zeitschr. F. Phys., 1925, 33: 879

    Article  ADS  Google Scholar 

  19. J. L. Park and H. Margenau, Int. J. Theor. Phys., 1968, 3(3): 211 See in particular page 213, “Many gedankenexperiments have been designed to illustrate Heisenberg’s famous law; unfortunately, the false impression is often conveyed that his principle, which is actually a theorem about standard deviations in collectives of measurement results, imposes restrictions on measur-ability.” italics in the original text.

    Article  Google Scholar 

  20. A. J. Heinrich, J. A. Gupta, C. P. Lutz, and D. M. Eigler, Science, 2004, 306(5695): 466

    Article  ADS  Google Scholar 

  21. D. Bohm, Phys. Rev., 1952, 85(2): 166

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Bohm, Phys. Rev., 1952, 85(2): 180

    Article  MathSciNet  ADS  Google Scholar 

  23. L. De Broglie, Non-linear Wave Mechanics: A Causal Interpretation, Amsterdam: Elsevier, 1960

    MATH  Google Scholar 

  24. D. Hestenes, Found. Phys., 2010, 40(1): 1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. J. C. Lian, Z. H. Cheng, Y. H. Jiang, Y. Y. Zhang, L. W. Liu, W. Ji, W. D. Xiao, S. X. Du, W. A. Hofer, and H. J. Gao, Phys. Rev. B, 2010, 81(19): 195411

    Article  ADS  Google Scholar 

  26. A. Khrennikov, Europhys. Lett., 2009, 90(4): 40004

    Article  ADS  Google Scholar 

  27. G. Gröessing, S. Fussy, J. Mesa Pascasio, and H. Schwabl, J. Phys.: Conf. Ser., 2011, 306: 012040

    Article  ADS  Google Scholar 

  28. H. T. Elze, J. Phys.: Conf. Ser., 2009, 171: 012034

    Article  ADS  Google Scholar 

  29. G. t’Hooft, J. Phys.: Conf. Ser., 2007, 67: U166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner A. Hofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofer, W.A. Heisenberg, uncertainty, and the scanning tunneling microscope. Front. Phys. 7, 218–222 (2012). https://doi.org/10.1007/s11467-012-0246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-012-0246-z

Keywords

Navigation