, Volume 7, Issue 1, pp 16-30
Date: 22 Jan 2012

Quantum dynamics in ultracold atomic physics

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We review recent developments in the theory of quantum dynamics in ultracold atomic physics, including exact techniques and methods based on phase-space mappings that are applicable when the complexity becomes exponentially large. Phase-space representations include the truncated Wigner, positive-P and general Gaussian operator representations which can treat both bosons and fermions. These phase-space methods include both traditional approaches using a phase-space of classical dimension, and more recent methods that use a non-classical phase-space of increased dimensionality. Examples used include quantum Einstein-Podolsky-Rosen (EPR) entanglement of a four-mode BEC, time-reversal tests of dephasing in single-mode traps, BEC quantum collisions with up to 106 modes and 105 interacting particles, quantum interferometry in a multi-mode trap with nonlinear absorption, and the theory of quantum entropy in phase-space. We also treat the approach of variational optimization of the sampling error, giving an elementary example of a nonlinear oscillator.