Skip to main content
Log in

Aquantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications

  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

Stochastic electrodynamics (SED) without spin, denoted as pure SED, has been discussed and seriously considered in the literature for several decades because it accounts for important aspects of quantum mechanics (QM). SED is based on the introduction of the nonrenormalized, electromagnetic stochastic zero-point field (ZPF), but neglects the Lorentz force due to the radiation random magnetic field Br. In addition to that rather basic limitation, other drawbacks remain, as well: i) SED fails when there are nonlinear forces; ii) it is not possible to derive the Schrödinger equation in general; iii) it predicts broad spectra for rarefied gases instead of the observed narrow spectral lines; iv) it does not explain double-slit electron diffraction patterns. We show in this short review that all of those drawbacks, and mainly the first most basic one, can be overcome in principle by introducing spin into stochastic electrodynamics (SEDS). Moreover, this modification of the theory also explains four observed effects that are otherwise so far unexplainable by QED, i.e., 1) the physical origin of the ZPF, and its natural upper cutoff; 2) an anomaly in experimental studies of the neutrino rest mass; 3) the origin and quantitative treatment of 1/f noise; and 4) the high-energy tail (∼ 1021 eV) of cosmic rays. We review the theoretical and experimental situation regarding these things and go on to propose a double-slit electron diffraction experiment that is aimed at discriminating between QM and SEDS. We show that, in the context of this experiment, for the case of an electron beam focused on just one of the slits, no interference pattern due to the other slit is predicted by QM, while this is not the case for SEDS. A second experiment that could discriminate between QED and SEDS regards a transversely large electron beam including both slits obtained in an insulating wall, where the ZPF is reduced but not vanished. The interference pattern according to SEDS should be somewhat modified with respect to QED’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. P. Feynman, QED: The Strange Theory of Light and Matter, 7th Ed., Princeton: Princeton University Press, 1988: 9

    Google Scholar 

  2. L. Bosi and G. Cavalleri, Nuovo Cimento B, 2002, 117: 243

    ADS  Google Scholar 

  3. G. Cavalleri and L. Bosi, Phys. Stat. Sol. (c), 2007, 4: 1230

    Article  Google Scholar 

  4. G. Cavalleri, E. Tonni, L. Bosi, and G. Spavieri, Fluct. Noise Lett., 2007, 7: L193

    Article  Google Scholar 

  5. E. Nelson, Phys. Rev., 1966, 150(4): 1079

    Article  ADS  Google Scholar 

  6. J. G. Gilson, Proc. Cambridge Philos. Soc., 1968, 74(4): 1061

    Article  Google Scholar 

  7. A. F. Kracklauer, Phys. Rev. D, 1974, 10(4): 1358

    Article  ADS  Google Scholar 

  8. G. Cavalleri, Phys. Rev. D, 1981, 23(2): 363

    Article  MathSciNet  ADS  Google Scholar 

  9. L. De la Peña-Auerbach and A. M. Cetto, Found. Phys., 1975, 5(2): 355

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Carati and L. Galgani, Phys. Rev. E, 2000, 61(5): 4791

    Article  ADS  Google Scholar 

  11. G. Cavalleri and E. Cesaroni, Phys. Rev. E, 2003, 68: 028101

    Article  ADS  Google Scholar 

  12. A. Carati and L. Galgani, Phys. Rev. E, 2003, 68: 028102

    Article  ADS  Google Scholar 

  13. A. Carati, L. Galgani, and B. Pozzi, Phys. Rev. Lett., 2003, 90: 010601

    Article  ADS  Google Scholar 

  14. For a more readable derivation, see: T. H. Boyer, Phys. Rev., 1969, 182: 1374

    Article  ADS  Google Scholar 

  15. T. H. Boyer, Phys. Rev. D, 1975, 11: 790

    Article  ADS  Google Scholar 

  16. G. Cavalleri, E. Tonni, C. Bernasconi, and P. Di Sia, Nuovo Cimento B, 2001, 116: 1353

    ADS  Google Scholar 

  17. G. Cavalleri, F. Barbero, E. Tonni, D. Molteni, G. Bottoni, and S. Lacchin, in: Proc. of X Int. Conf., Physical Interpretations of Relativity Theory, London, September, 8-11 2006, edited by M. C. Duffy, University of Sunderland, PD Publications, Liverpool, Great Britain, 2008, Vol. I (in press)

    Google Scholar 

  18. T. W. Marshall and P. Claverie, J. Math. Phys., 1980, 21: 1819

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Rueda and G. Cavalleri, Nuovo Cimento C, 1983, 6: 239

    Article  ADS  Google Scholar 

  20. H. E. Puthoff, Phys. Rev. D, 1987, 35: 3266

    Article  ADS  Google Scholar 

  21. M. Surdin, P. Braffort, and A. Taroni, Nature, 1966, 210(5034): 405

    Article  ADS  Google Scholar 

  22. E. Santos, Nuovo Cimento B, 1974, 19(1): 57

    Article  ADS  Google Scholar 

  23. L. De la Peña-Auerbach and A. M. Cetto, J. Math. Phys., 1979, 20(3): 469

    Article  MathSciNet  ADS  Google Scholar 

  24. T. H. Boyer, Phys. Rev. A, 1980, 21: 66

    Article  MathSciNet  ADS  Google Scholar 

  25. T. H. Boyer, Phys. Rev. D, 1984, 29: 1089

    Article  ADS  Google Scholar 

  26. A. Rueda, Nuovo Cimento A, 1978, 48: 155

    Article  ADS  Google Scholar 

  27. A. Rueda, Phys. Rev. A, 1981, 23: 2020

    Article  MathSciNet  ADS  Google Scholar 

  28. L. De la Peña-Auerbach, Stochastic Electrodynamics: its development, present situation, and perspectives, in: Stochastic Processes Applied to Physics and other Related Fields, edited by G. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, and A. Rueda, World Scientific, 1983: 428–649. The criticism to Boyer’s 1969 paper [14], is found in: L. De la Peñna-Auerbach and A. M. Cetto, The Quantum Dice, Kluwer, 1996, Chap. 5, Sec. 5.2: 1476

  29. B. Haisch, A. Rueda, and H. E. Puthoff, Phys. Rev. A, 1994, 49: 678

    Article  ADS  Google Scholar 

  30. A. Rueda, B. Haisch, and D. C. Cole, Astrophys. J., 1995, 445: 7

    Article  ADS  Google Scholar 

  31. D. C. Cole, A. Rueda, and K. Danley, Phys. Rev. A, 2001, 63: 054101

    Article  ADS  Google Scholar 

  32. A. Rueda and B. Haisch, Ann. Phys. (Leipzig), 2005, 14: 479

    Article  MathSciNet  ADS  Google Scholar 

  33. Y. S. Levin, Phys. Rev. A, 2009, 79: 012114

    Article  ADS  Google Scholar 

  34. L. Pesquera and P. Claverie, J. Math. Phys., 1982, 23: 1315

    Article  MathSciNet  ADS  Google Scholar 

  35. A. O. Barut and N. Zanghi, Phys. Rev. Lett., 1984, 52: 2009

    Article  MathSciNet  ADS  Google Scholar 

  36. G. Cavalleri, Nuovo Cimento B, 1997, 112: 1193

    ADS  Google Scholar 

  37. I. Pitowsky, Phys. Rev Lett., 1982, 48: 1299

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Z. Albert and R. Galchen, Was Einstein Wrong?: A Quantum Threat to Special Relativity, in: Scientific American Magazine, March 2009

  39. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 1982, 49: 1804

    Article  MathSciNet  ADS  Google Scholar 

  40. G. Cavalleri, E. Cesaroni, and E. Tonni, in: Recent advances in Relativity Theory 2: material interpretations, edited by M. C. Duffy and M. Wegener, Palm Harbor, Florida (USA): Hadronic Press, 2001, Vol. 2: 19

    Google Scholar 

  41. G. Cavalleri, Lett. Nuovo Cimento, 1985, 43: 285

    Article  MathSciNet  Google Scholar 

  42. G. Cavalleri and G. Spavieri, Nuovo Cimento B, 1986, 95: 194

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Maddox, Nature (London), 1987, 325: 385

    Article  ADS  Google Scholar 

  44. G. Cavalleri and G. Mauri, Phys. Rev. B, 1990, 41: 6751

    Article  MathSciNet  ADS  Google Scholar 

  45. G. Cavalleri and A. Zecca, Phys. Rev. B, 1991, 43: 3223

    Article  ADS  Google Scholar 

  46. A. Zecca and G. Cavalleri, Nuovo Cimento B, 1997, 112: 1

    Google Scholar 

  47. G. Cavalleri and E. Tonni, in: The Foundation of Quantum Mechanics — Historical Analysis and Open Questions — Lecce 1998, edited by C. Garola and A. Rossi, World Scientific Publ., 2000: 111

  48. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, and J. Endo, Phys. Rev. Lett., 1986, 56: 792

    Article  ADS  Google Scholar 

  49. N. Osakabe, et al., Phys. Rev. A, 1986, 34: 815

    Article  ADS  Google Scholar 

  50. A. Tonomura, et al., Am. J. Phys., 1989, 57: 117

    Article  ADS  Google Scholar 

  51. Y. Aharonov and D. Bohm, Phys. Rev., 1959, 115: 48

    Article  MathSciNet  ADS  Google Scholar 

  52. Y. Aharonov and A. Casher, Phys. Rev. Lett., 1984, 53: 319

    Article  MathSciNet  ADS  Google Scholar 

  53. G. Spavieri, Phys. Rev. Lett., 1998, 81: 1533

    Article  ADS  Google Scholar 

  54. G. Spavieri, Phys. Rev. A, 1999, 59: 3194

    Article  ADS  Google Scholar 

  55. X. G. He and B. H. J. McKellar, Phys. Rev. A, 1993, 47: 3424

    Article  ADS  Google Scholar 

  56. M. Wilkens, Phys. Rev. A, 1994, 49: 570

    Article  ADS  Google Scholar 

  57. M. Wilkens, Phys. Rev. Lett., 1994, 72: 5

    Article  ADS  Google Scholar 

  58. J. Anandan, Phys. Rev. Lett., 2000, 85: 1354

    Article  ADS  Google Scholar 

  59. V. M. Tkachuk, Phys. Rev. A, 2000, 62: 052112–1

    Article  ADS  Google Scholar 

  60. G. Spavieri, Phys. Rev. Lett., 1999, 82: 3932

    Article  ADS  Google Scholar 

  61. G. Spavieri, Phys. Lett. A, 2003, 310: 13

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. G. Spavieri, Eur. Phys. J. D, 2006, 39: 157

    Article  ADS  Google Scholar 

  63. T. H. Boyer, Phys. Rev. A, 1987, 36: 5083

    Article  ADS  Google Scholar 

  64. T. H. Boyer, Nuovo Cimento B, 1987, 100: 685

    MathSciNet  ADS  Google Scholar 

  65. G. Spavieri and G. Cavalleri, Europhys. Lett., 1992, 18: 301

    Article  ADS  Google Scholar 

  66. G. Spavieri, Eur. J. Phys. D, 2006, 37: 327

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Spavieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalleri, G., Barbero, F., Bertazzi, G. et al. Aquantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications. Front. Phys. China 5, 107–122 (2010). https://doi.org/10.1007/s11467-009-0080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-009-0080-0

Keywords

Navigation