Skip to main content
Log in

Approximation by semigroup of spherical operators

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

This paper concerns about the approximation by a class of positive exponential type multiplier operators on the unit sphere \(\mathbb{S}^n \) of the (n + 1)-dimensional Euclidean space for n ⩾ 2. We prove that such operators form a strongly continuous contraction semigroup of class \((C_0 )\) and show the equivalence between the approximation errors of these operators and the K-functionals. We also give the saturation order and the saturation class of these operators. As examples, the rth Boolean of the generalized spherical Abel-Poisson operator ⊕r V γ t and the rth Boolean of the generalized spherical Weierstrass operator ⊕r W κ t for integer r ⩾ 1 and reals γ, κ ∈ (0, 1] have errors \(\left\| { \oplus ^r V_t^\gamma f - f} \right\|_X \asymp \omega ^{r\gamma } (f,t^{1/\gamma } )_X \) and \(\left\| { \oplus ^r W_t^\kappa f - f} \right\|_X \asymp \omega ^{r\kappa } (f,t^{1/(2\kappa )} )_X \) for all f\(X\) and 0 ⩽ t ⩽ 2π, where \(X\) is the Banach space of all continuous functions or all p integrable functions, 1 ⩽ p < +∞, on \(\mathbb{S}^n \) with norm \(\left\| \cdot \right\|_X \), and \(\omega ^s (f,t)_X \) is the modulus of smoothness of degree s > 0 for f\(X\). Moreover, ⊕r V γ t and ⊕r W κ t have the same saturation class if γ = 2κ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey R, Wainger S. On the behavior of special classes of ultraspherical expansions, I. J d’Analyse Math, 1965, 15: 193–220

    Article  MATH  MathSciNet  Google Scholar 

  2. Askey R, Wainger S. On the behavior of special classes of ultraspherical expansions, II. J d’Analyse Math, 1965, 15: 221–244

    Article  MathSciNet  Google Scholar 

  3. Berens H, Butzer P L, Pawelke S. Limitierungsverfahren von reihen mehrdimensionaler kugelfunktionen und deren saturationsverhalten. Publ Res Inst Math Sci Ser A, 1968, 4(2): 201–268

    Article  MATH  MathSciNet  Google Scholar 

  4. Bochner S. Quasi analytic functions, Laplace operator, positive kernels. Ann Math, 1950, 51(1): 68–91

    Article  MATH  MathSciNet  Google Scholar 

  5. Bochner S. Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions. In: Proceedings of the Conference on Differential Equations. University of Maryland, 1955, 23–48

    Google Scholar 

  6. Butzer P L, Berens H. Semi-groups of Operators and Approximation. Berlin: Springer, 1967

    Book  MATH  Google Scholar 

  7. Dai F. Some equivalence theorems with K-functionals. J Approx Theory, 2003, 121: 143–157

    Article  MATH  MathSciNet  Google Scholar 

  8. Dai F, Ditzian Z. Strong converse inequality for Poisson sums. Proc Amer Math Soc, 2005, 133(9): 2609–2611

    Article  MATH  MathSciNet  Google Scholar 

  9. Ditzian Z, Ivanov K. Strong converse inequalities. J d’Analyse Math, 1993, 61: 61–111

    Article  MATH  MathSciNet  Google Scholar 

  10. Dunkl C F. Operators and harmonic analysis on the sphere. Trans Amer Math Soc, 1966, 125(2): 250–263

    Article  MATH  MathSciNet  Google Scholar 

  11. Favard J. Sur l’approximation des fonctions d’une variable reelle. Colloque d’Anal Harmon Publ CNRS, Paris, 1949, 15: 97–110

    MathSciNet  Google Scholar 

  12. Kaczmarz S, Steinhaus H. Theorie der Orthogonalreihen. Warsaw: Instytut Matematyczny Polskiej Akademi Nauk, 1935

    Google Scholar 

  13. Kuttner B. On positive Riesz and Abel typical means. Proc Lond Math Soc Ser 2, 1947, 49(1): 328–352

    Article  MATH  MathSciNet  Google Scholar 

  14. Riemenschneider S, Wang K Y. Approximation theorems of Jackson type on the sphere. Adv Math (China), 1995, 24(2): 184–186

    MATH  Google Scholar 

  15. Szegö G. Orthogonal Polynomials. Providence: Amer Math Soc, 2003

    Google Scholar 

  16. Wang K Y, Li L Q. Harmonic Analysis and Approximation on the Unit Sphere. Beijing: Science Press, 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feilong Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Cao, F. Approximation by semigroup of spherical operators. Front. Math. China 9, 387–416 (2014). https://doi.org/10.1007/s11464-014-0361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-014-0361-y

Keywords

MSC

Navigation