Journal of Geographical Sciences

, Volume 22, Issue 2, pp 315–328

Effects of a conversion from grassland to cropland on the different soil organic carbon fractions in Inner Mongolia, China

  • Yuchun Qi
  • Yunshe Dong
  • Qin Peng
  • Shengsheng Xiao
  • Yating He
  • Xinchao Liu
  • Liangjie Sun
  • Junqiang Jia
  • Zhijie Yang
Article

DOI: 10.1007/s11442-012-0929-y

Cite this article as:
Qi, Y., Dong, Y., Peng, Q. et al. J. Geogr. Sci. (2012) 22: 315. doi:10.1007/s11442-012-0929-y

Abstract

Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not been fully understood yet. In this paper, the role of cropping in soil organic C pool of different fractions was investigated in a meadow steppe region in Inner Mongolia of China, and the relationships between different C fractions were also discussed. The results indicated that the concentrations of different C fractions at steppe and cultivated land all decreased progressively with soil depth. After the conversion from steppe to spring wheat field for 36 years, total organic carbon (TOC) concentration at the 0 to 100 cm soil depth has decreased by 12.3% to 28.2%, and TOC of the surface soil horizon, especially those of 0–30 cm decreased more significantly (p<0.01). The dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at the depth of 0–40 cm were found to have decreased by 66.7% to 77.1% and 36.5% to 42.4%, respectively. In the S. baicalensis steppe, the ratios of soil DOC to TOC varied between 0.52% and 0.60%, and those in the spring wheat field were only in the range of 0.18%–0.20%. The microbial quotients (qMBs) in the spring wheat field, varying from 1.11% to 1.40%, were also lower than those in the S. baicalensis steppe, which were in the range of 1.50%–1.63%. The change of DOC was much more sensitive to cultivation disturbance. Soil TOC, DOC, and MBC were significantly positive correlated with each other in the S. baicalensis steppe, but in the spring wheat field, the correlativity between DOC and TOC and that between DOC and MBC did not reach the significance level of 0.05.

Keywords

temperate grasslandcultivationsoiltotal organic carbon, dissolved organic carbonmicrobial biomass carbon

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yuchun Qi
    • 1
  • Yunshe Dong
    • 1
  • Qin Peng
    • 1
  • Shengsheng Xiao
    • 1
    • 3
  • Yating He
    • 1
    • 2
  • Xinchao Liu
    • 1
    • 2
  • Liangjie Sun
    • 1
    • 2
  • Junqiang Jia
    • 1
    • 2
  • Zhijie Yang
    • 4
  1. 1.Institute of Geographic Sciences and Natural Resources ResearchCASBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Jiangxi Provincial Research Institute for Soil and Water ConservationNanchangChina
  4. 4.Key Laboratory of Humid Subtropical Eco-geographical ProcessFujian Normal University, Ministry of EducationFuzhouChina