Skip to main content
Log in

Recent advances in nanoporous graphene membrane for gas separation and water purification

多孔石墨烯分离膜的最新研究进展:气体分离和`水净化

  • Review
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

Graphene is a one-atom-thick sheet of graphite comprising sp2-hybridized carbon atoms arranged in the hexagonal honeycomb lattices. By removing the honeycomb lattices and forming nanopores with specific geometry and size, nanoporous graphene has been demonstrated as a very high-efficiency separation membrane, due to the ultrafast molecular permeation rate for its one-atom thickness. This review focuses on the recent advances in nanoporous graphene membrane for the applications of gas separation and water purification, with a major emphasis on the molecular permeation mechanisms and the advanced fabrication methods of this state-of-the-art membrane. We highlight the advanced theoretical and experimental works and discuss the gas/water molecular transport mechanisms through the graphene nanopores accompanied with theoretical models. In addition, we summarize some representative membrane fabrication methods, covering the graphene transfer to porous substrates and the pore generation. We anticipate that this review can provide a platform for understanding the current challenges to make the conceptual membrane a reality and attracting more and more attentions from scientists and engineers.

摘要

石墨烯是由碳原子以sp 2杂化结构组成的单原子层二维晶体。具有亚纳米级孔隙的多孔石墨烯可作为一种高效的分离膜,因为分子在石墨烯纳米孔中极高的穿透速率导致多孔石墨烯分离膜的渗透率很高。本文以气体分离和水净化为应用背景,回顾总结多孔石墨烯分离膜在实验和理论方面的最新研究进展,着重介绍气体和水分子在多孔石墨烯中的渗透机制和数理模型,以及多孔石墨烯分离膜的制备技术,包括石墨烯往多孔基底的转移和纳米孔的产生。为了使多孔石墨烯分离膜尽早付诸实践,本文建议重点开展分子渗透机理、膜制备技术和工业应用等方面的科学研究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  2. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  3. Meyer JC, Geim AK, Katsnelson MI et al (2007) The structure of suspended graphene sheets. Nature 446:60–63

    Article  Google Scholar 

  4. Girit CO, Meyer JC, Erni R et al (2009) Graphene at the edge: stability and dynamics. Science 323:1705–1708

    Article  Google Scholar 

  5. Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6:858–861

    Article  Google Scholar 

  6. Balandin AA, Ghosh S, Bao WZ et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  7. Chen SS, Wu QZ, Mishra C et al (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11:203–207

    Article  Google Scholar 

  8. Yao WJ, Cao BY (2014) Thermal wave propagation in graphene studied by molecular dynamics simulations. Chin Sci Bull 59:3495–3503

    Article  Google Scholar 

  9. Lee C, Wei XD, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  10. Gómez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049

    Article  Google Scholar 

  11. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  12. Castro Neto AH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  13. Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  14. Novoselov KS, Falko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  15. Hu S, Lozada-Hidalgo M, Wang FC et al (2014) Proton transport through one-atom-thick crystals. Nature 516:227–230

    Article  Google Scholar 

  16. Achtyl JL, Unocic RR, Xu L et al (2015) Aqueous proton transfer across single-layer graphene. Nat Commun 6:6539

    Article  Google Scholar 

  17. Bunch JS, Verbridge SS, Alden JS et al (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462

    Article  Google Scholar 

  18. Berry V (2013) Impermeability of graphene and its applications. Carbon 62:1–10

    Article  Google Scholar 

  19. Tsetseris L, Pantelides ST (2014) Graphene: an impermeable or selectively permeable membrane for atomic species? Carbon 67:58–63

    Article  Google Scholar 

  20. Xu P, Yang J, Wang K et al (2012) Porous graphene: properties, preparation, and potential applications. Chin Sci Bull 57:2948–2955

    Article  Google Scholar 

  21. Liu Y, Chen X (2014) Mechanical properties of nanoporous graphene membrane. J Appl Phys 115:034303

    Article  Google Scholar 

  22. Anonymous (2015) Graphene opens up to new applications. Nat Nanotechnol 10:381

    Article  Google Scholar 

  23. Du HL, Li JY, Zhang J et al (2011) Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C 115:23261–23266

    Article  Google Scholar 

  24. Jiang DE, Cooper VR, Dai S (2009) Porous graphene as the ultimate membrane for gas separation. Nano Lett 9:4019–4024

    Article  Google Scholar 

  25. Koenig SP, Wang LD, Pellegrino J et al (2012) Selective molecular sieving through porous graphene. Nat Nanotechnol 7:728–732

    Article  Google Scholar 

  26. Wen BY, Sun CZ, Bai BF (2015) Molecular dynamics simulation of the separation of CH4/CO2 by nanoporous graphene. Acta Phys Chim Sin 31:261–267

    Google Scholar 

  27. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  28. Li XS, Cai WW, An JH et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  Google Scholar 

  29. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  30. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  31. Aleman B, Regan W, Aloni S et al (2010) Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4:4762–4768

    Article  Google Scholar 

  32. Lin YC, Jin CH, Lee JC et al (2011) Clean transfer of graphene for isolation and suspension. ACS Nano 5:2362–2368

    Article  Google Scholar 

  33. O’Hern SC, Stewart CA, Boutilier MSH et al (2012) Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6:10130–10138

    Article  Google Scholar 

  34. Russo CJ, Golovchenko JA (2012) Atom-by-atom nucleation and growth of graphene nanopores. Proc Natl Acad Sci USA 109:5953–5957

    Article  Google Scholar 

  35. Bai JW, Zhong X, Jiang S et al (2010) Graphene nanomesh. Nat Nanotechnol 5:190–194

    Article  Google Scholar 

  36. Bieri M, Treier M, Cai JM et al (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun 45:6919–6921

    Article  Google Scholar 

  37. Huh S, Park J, Kim YS et al (2011) UV/Ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced raman scattering. ACS Nano 5:9799–9806

    Article  Google Scholar 

  38. Liu L, Ryu SM, Tomasik MR et al (2008) Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett 8:1965–1970

    Article  Google Scholar 

  39. Sint K, Wang B, Kral P (2008) Selective ion passage through functionalized graphene nanopores. J Am Chem Soc 130:16448

    Article  Google Scholar 

  40. Huang K, Liu G, Lou Y et al (2014) A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew Chem Int Ed 53:6929–6932

    Article  Google Scholar 

  41. Huang H, Mao Y, Ying Y et al (2013) Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem Commun 49:5963–5965

    Article  Google Scholar 

  42. Shen J, Liu G, Huang K et al (2015) Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew Chem Int Ed 54:578–582

    Google Scholar 

  43. Huang H, Song Z, Wei N et al (2013) Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun 4:2979

    Google Scholar 

  44. Ying Y, Sun L, Wang Q et al (2014) In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation. RSC Adv 4:21425–21428

    Article  Google Scholar 

  45. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723

    Article  Google Scholar 

  46. Sun P, Zhu M, Wang K et al (2013) Selective ion penetration of graphene oxide membranes. ACS Nano 7:428–437

    Article  Google Scholar 

  47. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 23:3693–3700

    Article  Google Scholar 

  48. Nair RR, Wu HA, Jayaram PN et al (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335:442–444

    Article  Google Scholar 

  49. Mi B (2014) Graphene oxide membranes for ionic and molecular sieving. Science 343:740–742

    Article  Google Scholar 

  50. Li H, Song Z, Zhang X et al (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98

    Article  Google Scholar 

  51. Joshi RK, Carbone P, Wang FC et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343:752–754

    Article  Google Scholar 

  52. Blankenburg S, Bieri M, Fasel R et al (2010) Porous graphene as an atmospheric nanofilter. Small 6:2266–2271

    Article  Google Scholar 

  53. Du AJ, Zhu ZH, Smith SC (2010) Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations. J Am Chem Soc 132:2876–2877

    Article  Google Scholar 

  54. Schrier J (2010) Helium separation using porous graphene membranes. J Phys Chem Lett 1:2284–2287

    Article  Google Scholar 

  55. Xue Q, Shan M, Tao Y et al (2014) N-doped porous graphene for carbon dioxide separation: a molecular dynamics study. Chin Sci Bull 59:3919–3925

    Article  Google Scholar 

  56. Celebi K, Buchheim J, Wyss RM et al (2014) Ultimate permeation across atomically thin porous graphene. Science 344:289–292

    Article  Google Scholar 

  57. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  Google Scholar 

  58. O’Hern SC, Boutilier MSH, Idrobo J-C et al (2014) Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett 14:1234–1241

    Article  Google Scholar 

  59. Surwade SP, Smirnov SN, Vlassiouk IV et al (2015) Water desalination using nanoporous single-layer graphene. Nat Nanotechnol 10:459–464

    Article  Google Scholar 

  60. Karnik RN (2014) Materials science: breakthrough for protons. Nature 516:173–175

    Article  Google Scholar 

  61. Hauser AW, Schrier J, Schwerdtfeger P (2012) Helium tunneling through nitrogen-functionalized graphene pores: pressure- and temperature-driven approaches to isotope separation. J Phys Chem C 116:10819–10827

    Article  Google Scholar 

  62. Hauser AW, Schwerdtfeger P (2011) Nanoporous graphene membranes for efficient 3He/4He separation. J Phys Chem Lett 3:209–213

    Article  Google Scholar 

  63. Schrier J, McClain J (2012) Thermally-driven isotope separation across nanoporous graphene. Chem Phys Lett 521:118–124

    Article  Google Scholar 

  64. Hankel M, Jiao Y, Du A et al (2012) Asymmetrically decorated, doped porous graphene as an effective membrane for hydrogen isotope separation. J Phys Chem C 116:6672–6676

    Article  Google Scholar 

  65. Wang L, Drahushuk LW, Cantley L et al (2015) Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene. Nat Nanotechnol 10:785–790

    Article  Google Scholar 

  66. Postma HWC (2010) Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett 10:420–425

    Article  Google Scholar 

  67. Schneider GF, Kowalczyk SW, Calado VE et al (2010) DNA translocation through graphene nanopores. Nano Lett 10:3163–3167

    Article  Google Scholar 

  68. Siwy ZS, Davenport M (2010) Nanopores: graphene opens up to DNA. Nat Nanotechnol 5:697–698

    Article  Google Scholar 

  69. Schrier J (2012) Carbon dioxide separation with a two-dimensional polymer membrane. ACS Appl Mater Interface 4:3745–3752

    Article  Google Scholar 

  70. Tao Y, Xue Q, Liu Z et al (2014) Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl Mater Interface 6:8048–8058

    Article  Google Scholar 

  71. Wu T, Xue Q, Ling C et al (2014) Fluorine-modified porous graphene as membrane for CO2/N2 separation: molecular dynamic and first-principles simulations. J Phys Chem C 118:7369–7376

    Article  Google Scholar 

  72. Liu H, Dai S, Jiang D (2013) Permeance of H2 through porous graphene from molecular dynamics. Solid State Commun 175–176:101–105

    Article  Google Scholar 

  73. Liu H, Dai S, Jiang D (2013) Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics. Nanoscale 5:9984–9987

    Article  Google Scholar 

  74. Liu H, Chen Z, Dai S et al (2015) Selectivity trend of gas separation through nanoporous graphene. J Solid State Chem 224:2–6

    Article  Google Scholar 

  75. Sun C, Wen B, Bai B (2015) Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chem Eng Sci 138:616–621

    Article  Google Scholar 

  76. Lu R, Rao D, Lu Z et al (2012) Prominently improved hydrogen purification and dispersive metal binding for hydrogen storage by substitutional doping in porous graphene. J Phys Chem C 116:21291–21296

    Article  Google Scholar 

  77. Nieszporek K, Drach M (2015) Alkane separation using nanoporous graphene membranes. Phys Chem Chem Phys 17:1018–1024

    Article  Google Scholar 

  78. Sun C, Boutilier MSH, Au H et al (2014) Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir 30:675–682

    Article  Google Scholar 

  79. Ambrosetti A, Silvestrelli PL (2014) Gas separation in nanoporous graphene from first principle calculations. J Phys Chem C 118:19172–19179

    Article  Google Scholar 

  80. Hauser AW, Schwerdtfeger P (2012) Methane-selective nanoporous graphene membranes for gas purification. Phys Chem Chem Phys 14:13292–13298

    Article  Google Scholar 

  81. Qin X, Meng Q, Feng Y et al (2013) Graphene with line defect as a membrane for gas separation: design via a first-principles modeling. Surf Sci 607:153–158

    Article  Google Scholar 

  82. Drahushuk LW, Strano MS (2012) Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28:16671–16678

    Article  Google Scholar 

  83. Shan M, Xue Q, Jing N et al (2012) Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale 4:5477–5482

    Article  Google Scholar 

  84. Lei G, Liu C, Xie H et al (2014) Separation of the hydrogen sulfide and methane mixture by the porous graphene membrane: effect of the charges. Chem Phys Lett 599:127–132

    Article  Google Scholar 

  85. Huang C, Wu H, Deng K et al (2014) Improved permeability and selectivity in porous graphene for hydrogen purification. Phys Chem Chem Phys 16:25755–25759

    Article  Google Scholar 

  86. Wen B, Sun C, Bai B (2015) Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membrane. Phys Chem Chem Phys 17:23619–23626

    Article  Google Scholar 

  87. Boutilier MSH, Sun C, O’Hern SC et al (2014) Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8:841–849

    Article  Google Scholar 

  88. Kim HW, Yoon HW, Yoon S-M et al (2013) Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342:91–95

    Article  Google Scholar 

  89. Konatham D, Yu J, Ho TA et al (2013) Simulation insights for graphene-based water desalination membranes. Langmuir 29:11884–11897

    Article  Google Scholar 

  90. Cohen-Tanugi D, McGovern RK, Dave SH et al (2014) Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ Sci 7:1134–1141

    Article  Google Scholar 

  91. Zhu C, Li H, Zeng XC et al (2013) Quantized water transport: ideal desalination through graphyne-4 membrane. Sci Rep 3:3163

    Google Scholar 

  92. Zhu C, Li H, Meng S (2014) Transport behavior of water molecules through two-dimensional nanopores. J Chem Phys 141:18C528

    Article  Google Scholar 

  93. Suk ME, Aluru NR (2010) Water transport through ultrathin graphene. J Phys Chem Lett 1:1590–1594

    Article  Google Scholar 

  94. Cohen-Tanugi D, Grossman JC (2014) Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. J Chem Phys 141:074704

    Article  Google Scholar 

  95. Cohen-Tanugi D, Grossman JC (2014) Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett 14:6171–6178

    Article  Google Scholar 

  96. Hu G, Mao M, Ghosal S (2012) Ion transport through a graphene nanopore. Nanotechnology 23:395501

    Article  Google Scholar 

  97. Suk ME, Aluru NR (2014) Ion transport in sub-5-nm graphene nanopores. J Chem Phys 140:084707

    Article  Google Scholar 

  98. Zhao S, Xue J, Kang W (2013) Ion selection of charge-modified large nanopores in a graphene sheet. J Chem Phys 139:114702

    Article  Google Scholar 

  99. O’Hern SC, Jang D, Bose S et al (2015) Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett 15:3254–3260

    Article  Google Scholar 

  100. Azamat J, Khataee A, Joo SW (2015) Molecular dynamics simulation of trihalomethanes separation from water by functionalized nanoporous graphene under induced pressure. Chem Eng Sci 127:285–292

    Article  Google Scholar 

  101. Kang Y, Zhang Z, Shi H et al (2014) Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale 6:10666–10672

    Article  Google Scholar 

  102. Liang X, Fu Z, Chou SY (2007) Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett 7:3840–3844

    Article  Google Scholar 

  103. Liu L-H, Yan M (2009) Simple method for the covalent immobilization of graphene. Nano Lett 9:3375–3378

    Article  Google Scholar 

  104. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  Google Scholar 

  105. Regan W, Alem N, Alemán B et al (2010) A direct transfer of layer-area graphene. Appl Phys Lett 96:113102

    Article  Google Scholar 

  106. Caldwell JD, Anderson TJ, Culbertson JC et al (2010) Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 4:1108–1114

    Article  Google Scholar 

  107. Allen MJ, Tung VC, Gomez L et al (2009) Soft transfer printing of chemically converted graphene. Adv Mater 21:2098–2102

    Article  Google Scholar 

  108. Suk JW, Kitt A, Magnuson CW et al (2011) Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5:6916–6924

    Article  Google Scholar 

  109. Fischbein MD, Drndić M (2008) Electron beam nanosculpting of suspended graphene sheets. Appl Phys Lett 93:113107

    Article  Google Scholar 

  110. Safron NS, Brewer AS, Arnold MS (2011) Semiconducting two-dimensional graphene nanoconstriction arrays. Small 7:492–498

    Article  Google Scholar 

  111. Fan Z, Zhao Q, Li T et al (2012) Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50:1699–1703

    Article  Google Scholar 

  112. Fox D, O’Neill A, Zhou D et al (2011) Nitrogen assisted etching of graphene layers in a scanning electron microscope. Appl Phys Lett 98:243117

    Article  Google Scholar 

  113. Liang X, Jung Y-S, Wu S et al (2010) Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett 10:2454–2460

    Article  Google Scholar 

  114. Yuan W, Chen J, Shi G (2014) Nanoporous graphene materials. Mater Today 17:77–85

    Article  Google Scholar 

  115. Safron NS, Kim M, Gopalan P et al (2012) Barrier-guided growth of micro- and nano-structured graphene. Adv Mater 24:1041–1045

    Article  Google Scholar 

  116. Ning G, Fan Z, Wang G et al (2011) Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem Commun 47:5976–5978

    Article  Google Scholar 

  117. Wang M, Fu L, Gan L et al (2013) CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep 3:1238

    Google Scholar 

  118. Paul RK, Badhulika S, Saucedo NM et al (2012) Graphene nanomesh as highly sensitive chemiresistor gas sensor. Anal Chem 84:8171–8178

    Article  Google Scholar 

  119. Koh D-Y, Lively RP (2015) Nanoporous graphene: membranes at the limit. Nat Nanotechnol 10:385–386

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51425603 and 51236007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Wen, B. & Bai, B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull. 60, 1807–1823 (2015). https://doi.org/10.1007/s11434-015-0914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0914-9

Keywords

Navigation