Skip to main content
Log in

Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle

大陆弧陆壳的形成,陆弧榴辉岩的拆沉循环,以及异常富集地幔熔体的成因

  • Review
  • Earth Sciences
  • Published:
Science Bulletin

Abstract

The total magmatic output in modern arcs, where continental crust is now being formed, is believed to derive from melting of the mantle wedge and is largely basaltic. Globally averaged continental crust, however, has an andesitic bulk composition and is hence too silicic to have been derived directly from the mantle. It is well known that one way this imbalance can be reconciled is if the parental basalt differentiates into a mafic garnet pyroxenitic residue/cumulate (“arclogite”) and a complementary silicic melt, the former foundering or delaminating into the mantle due to its high densities and the latter remaining as the crust. Using the Sierra Nevada batholith in California as a case study, the composition of mature continental arc crust is shown in part to be the product of a cyclic process beginning with the growth of an arclogite layer followed by delamination of this layer and post-delamination basaltic underplating/recharge into what remains of the continental crust. A model is presented, wherein continuous arc magmatism and production of arclogites in continental arcs are periodically punctuated by a delamination event and an associated magmatic pulse every ~10–30 My. The recycling flux of arclogites is estimated to be ~5 %–20 % that of oceanic crust recycling by subduction. Delaminated arclogites have the necessary trace-element compositions to yield time-integrated isotopic compositions similar to those inferred to exist as reservoirs in the mantle. Because of their low melting temperatures, such pyroxenites may be preferentially melted, possibly forming a component of some hotspot magmas.

导读

本文以美国加州内华达山脉复合岩基(Sierra Nevada Batholith)为例,证明成熟陆壳的化学成分可由地幔岩浆分异-石榴辉石岩质堆晶形成-拆沉-岩浆补给-岩浆分异这一循环过程来解释,并同时建立了一个简单的物理模型用以阐释拆沉作用。在这个模型里,陆弧的岩浆作用持续进行,伴随岩浆分异以及地壳底部石榴辉石岩质堆晶层的生长,每隔10~30 Ma,这一过程被拆沉作用打断,石榴辉石岩质堆晶层拆沉进入地幔并伴随岩浆补给。我们估计被拆沉进入地幔的陆弧石榴辉石岩通量大约是俯冲洋壳通量的5%~20%。被拆沉的石榴辉石岩具有可衰变到地幔储区的同位素特征所需要的微量元素组成,因此弧石榴辉石岩也可以是形成地幔储区的贡献之一。此外,由于辉石岩的起始熔融温度较低,这种岩石通常最先被熔融,并可能成为一些热点(hot spot)岩浆的主要组成。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571

    Article  Google Scholar 

  2. Molnar P, Houseman GA, Conrad CP (1998) Rayleigh–Taylor instability and convective thinning of mechanically thickened lithosphere: effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer. Geophys J Int 133:568–584

    Article  Google Scholar 

  3. Conrad CP, Molnar P (1997) The growth of Rayleigh–Taylor-type instabilities in the lithosphere for various rheological and density structures. Geophys J Int 129:95–112

    Article  Google Scholar 

  4. Lee C-TA (2014) Physics and chemistry of deep continental crust recycling. Treatise Geochem 4:423–456

    Article  Google Scholar 

  5. Jull M, Kelemen P (2001) On the conditions for lower crustal convective instability. J Geophys Res 106:6423–6446

    Article  Google Scholar 

  6. Houseman G, Neil EA, Kohler MD (2000) Lithospheric instability beneath the Transverse Ranges of California. J Geophys Res 105:16237–16250

    Article  Google Scholar 

  7. Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J Geophys Res 86:6115–6132

    Article  Google Scholar 

  8. Houseman GA, Molnar PA (1997) Gravitational (Rayleigh–Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere. Geophys J Int 128:125–150

    Article  Google Scholar 

  9. Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  10. Wernicke B, Clayton R, Ducea M et al (1996) Origin of high mountains in the continents: the southern Sierra Nevada. Science 271:190–193

    Article  Google Scholar 

  11. Ducea MN, Saleeby JB (1996) Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J Geophys Res 101:8229–8244

    Article  Google Scholar 

  12. Levander A, Schmandt B, Miller M et al (2011) Continuing Colorado Plateau uplift by delamination-style convective lithospheric downwelling. Nature 472:461–465

    Article  Google Scholar 

  13. Zandt G, Gilbert H, Owens TJ et al (2004) Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature 431:41–46

    Article  Google Scholar 

  14. Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  Google Scholar 

  15. Kay RW, Kay SM (1988) Crustal recycling and the Aleutian arc. Geochim Cosmochim Acta 52:1351–1359

    Article  Google Scholar 

  16. Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. Treatise Geochem 3:593–659

    Google Scholar 

  17. Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol 120:1–19

    Article  Google Scholar 

  18. Lee C-TA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada, California. Contrib Mineral Petrol 151:222–242

    Article  Google Scholar 

  19. Lee C-TA, Morton DM, Kistler RW et al (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263:370–387

    Article  Google Scholar 

  20. Jagoutz E, Burg J-P, Hussain S et al (2009) Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistant (NW Pakistan). Contrib Mineral Petrol 158:739–755

    Article  Google Scholar 

  21. Jagoutz O, Schmidt MW (2012) The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem Geo 298–299:79–96

    Article  Google Scholar 

  22. Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160:359–381

    Article  Google Scholar 

  23. DeBari SM, Sleep NH (1991) High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol Soc Am Bull 103:37–47

    Article  Google Scholar 

  24. Gao S, Luo T-C, Zhang B-R et al (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  25. Gao S, Zhang B, Jin Z et al (1998) How mafic is the lower continental crust? Earth Planet Sci Lett 161:101–117

    Article  Google Scholar 

  26. Tatsumi Y (2000) Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochem Geophys Geosys 1:2000GC000094

  27. Arndt NT, Goldstein SL (1989) An open boundary between lower continental-crust and mantle: its role in crustal formation and recycling. Tectonophysics 161:201–212

    Article  Google Scholar 

  28. Herzberg CT, Fyfe WS, Carr MJ (1983) Density constraints on the formation of the continental Moho and crust. Contrib Mineral Petrol 84:1–5

    Article  Google Scholar 

  29. Ducea MN (2002) Constraints on the bulk composition and root foundering rates of continental arcs: a California arc perspective. J Geophys Res. doi:10.1029/2001JB000643

    Google Scholar 

  30. Ducea MN, Saleeby JB (1998) The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib Mineral Petrol 133:169–185

    Article  Google Scholar 

  31. McKenzie D, O’Nions RK (1983) Mantle reservoirs and ocean island basalts. Nature 301:229–231

    Article  Google Scholar 

  32. Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425:605–609

    Article  Google Scholar 

  33. Niu Y, Zhao Z, Zhu D-C et al (2013) Continental collision zones are primary sites for net continental crust growth—a testable hypothesis. Earth-Sci Rev 127:96–110

    Article  Google Scholar 

  34. Rollinson HR (1997) Eclogite xenoliths in West African kimberlites as residues from Archaean granitoid crust formation. Nature 389:173–176

    Article  Google Scholar 

  35. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  36. Barth MG, Rudnick RL, Horn I et al (2002) Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim Cosmochim Acta 66:4325–4345

    Article  Google Scholar 

  37. Barth MG, Rudnick RL, Horn I et al (2001) Geochemistry of xenolithic eclogites from West Africa, Part I: a link between low MgO eclogites and Archean crust formation. Geochim Cosmochim Acta 65:1499–1527

    Article  Google Scholar 

  38. Foley SF, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  39. Jagoutz O, Muntener O, Ulmer P et al (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas Complex Kohistan (NW Pakistan). J Petrol 48:1895–1953

    Article  Google Scholar 

  40. Ducea M (2001) The California arc: thick granitic batholiths, eclogitic residues, lithosphere-scale thrusting, and magmatic flare-ups. GSA Today 11:4–10

    Article  Google Scholar 

  41. Lee C-TA, Bachmann O (2014) How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet Sci Lett 393:266–274

    Article  Google Scholar 

  42. Lee C-TA, Luffi P, Chin EJ et al (2012) Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336:64–68

    Article  Google Scholar 

  43. Lee C-T, Rudnick RL, Brimhall GH (2001) Deep lithospheric dynamics beneath the Sierra Nevada during the Mesozoic and Cenozoic as inferred from xenolith petrology. Geochem Geophys Geosys. doi:10.1029/2001GC000152

    Google Scholar 

  44. Manley CR, Glazner AF, Farmer GL (2000) Timing of volcanism in the Sierra Nevada of California: evidence for Pliocene delamination of the batholithic root? Geology 28:811–814

    Article  Google Scholar 

  45. Farmer GL, Glazner AF, Manley CR (2002) Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California? Geol Soc Am Bull 114:754–768

    Article  Google Scholar 

  46. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

  47. Anderson DL (2005) Large igneous provinces, delamination, and fertile mantle. Elements 1:271–275

    Article  Google Scholar 

  48. Pertermann M, Hirschmann MM (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenites in basalt source regions. J Geophys Res 108:000111–000117. doi:10.1029/2000JB000118

    Google Scholar 

  49. Pertermann M, Hirschmann MM (2003) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201

    Article  Google Scholar 

  50. Sisson TW, Grove TL, Coleman RG (1996) Hornblende gabbro sill complex at Onion valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108

    Article  Google Scholar 

  51. Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558

    Article  Google Scholar 

  52. Lee C-TA, Lee T-C, Wu C-T (2014) Modeling the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: implications for differentiation of arc magmas. Geochim Cosmochim Acta 143:8–22

    Article  Google Scholar 

  53. England P, Katz RF (2010) Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467:700–704

    Article  Google Scholar 

  54. Karlstrom L, Lee C-TA, Manga M (2014) The role of magmatically driven lithospheric thickening on arc front migration. Geochem Geophys Geosys. doi:10.1002/2014GC005355

    Google Scholar 

  55. Lee C-TA (2003) Compositional variation of density and seismic velocities in natural peridotites at STP conditions: implications for seismic imaging of compositional heterogeneities in the upper mantle. J Geophys Res. doi:10.1029/2003JB002413

    Google Scholar 

  56. Arevalo R, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85

    Article  Google Scholar 

  57. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosys. doi:10.1029/2001GC000252

    Google Scholar 

  58. Clift PD, Vannucchi P, Phipps Morgan J (2009) Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth-Sci Rev 97:80–104

    Article  Google Scholar 

  59. Plank T, Langmuir C (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  60. von Huene R, Scholl D (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Article  Google Scholar 

  61. Peacock SM (1990) Fluid processes in subduction zones. Science 248:329–337

    Article  Google Scholar 

  62. Jicha BR, Scholl DW, Singer BS et al (2006) Revised age of Aleutian island arc formation implies high rate of magma production. Geology 34:661–664

    Article  Google Scholar 

  63. Mukhopadhyay B, Manton WI (1994) Upper mantle fragments from beneath the Sierra Nevada batholith-partial fusion, fractional crystallization and metasomatism in subduction-related ancient lithosphere. J Petrol 35:1418–1450

    Article  Google Scholar 

  64. Chin EJ, Lee C-TA, Barnes J (2014) Thickening, refertilization, and the deep lithosphere filter in continental arcs: constraints from major and trace elements and oxygen isotopes. Earth Planet Sci Lett 397:184–200

    Article  Google Scholar 

  65. Chin EJ, Lee C-TA, Luffi P et al (2012) Deep lithospheric thickening and refertilization beneath continental arcs: case study of the P, T and compositional evolution of peridotite xenoliths from the Sierra Nevada, California. J Petrol 53:477–511

    Article  Google Scholar 

  66. Chin EJ, Lee C-TA, Blichert-Toft J (2015) Growth of upper plate lithosphere controls tempo of arc magmatism: constraints from Al-diffusion kinetics and coupled Lu–Hf and Sm–Nd chronology. Geochem Perspect Lett 1:20–32

    Article  Google Scholar 

  67. Ranalli G, Murphy DC (1987) Rheological stratification of the lithosphere. Tectonophysics 132:281–295

    Article  Google Scholar 

  68. Gazel E, Plank T, Forsyth D et al (2012) Lithosphere versus asthenosphere mantle sources at the Big Pine volcanic field, California. Geochem Geophys Geosys. doi:10.1029/2012GC004060

    Google Scholar 

  69. Boyd OS, Jones CH, Sheehan AF (2004) Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. Science 305:660–662

    Article  Google Scholar 

  70. Saleeby J, Ducea M, Clemens-Knott D (2003) Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics. doi:10.1029/2002TC001374

    Google Scholar 

  71. Le Pourhiet L, Gurnis M, Saleeby J (2006) Mantle instability beneath the Sierra Nevada Mountains in California and Death Valley extension. Earth Planet Sci Lett 251:104–119

    Article  Google Scholar 

  72. Elkins Tanton LT (2007) Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. J Geophys Res. doi:10.1029/2005JB004072

    Google Scholar 

  73. Behn M, Hirth G, Kelemen PB (2007) Trench-parallel anisotropy produced by foundering of arc lower crust. Science 317:1141108–1141111. doi:10.1126/science/1141269

    Article  Google Scholar 

  74. Kohlstedt DL, Evans B, Mackwell SJ (1995) Strength of the lithosphere: constraints imposed by laboratory experiments. J Geophys Res 100:17587–17602

    Article  Google Scholar 

  75. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids: fluid mechanics, vol 1. Wiley, London

    Google Scholar 

  76. Wang Y, Huang J, Zhong S (2015) Episodic and multistaged gravitational instability of cratonic lithosphere and its implications for reactivation of the North China Craton. Geochem Geophys Geosys. doi:10.1002/2014GC005681

    Google Scholar 

  77. Lenardic A, Moresi L-N, Muhlhaus H-B (2003) Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res. doi:10.1029/2002JB001859

    Google Scholar 

  78. Sleep NH (2004) Evolution of the continental lithosphere. Annu Rev Earth Planet Sci 33:369–393

    Article  Google Scholar 

  79. Sleep NH (2003) Survival of Archean cratonal lithosphere. J Geophys Res. doi:10.1029/2001JB000169

    Google Scholar 

  80. Jaupart C, Molnar P, Cottrell E (2007) Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid. J Fluid Mech 572:433–469

    Article  Google Scholar 

  81. Lee C-TA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Annu Rev Earth Planet Sci 39:59–90

    Article  Google Scholar 

  82. Lee C-TA, Lenardic A, Cooper CM et al (2005) The role of chemical boundary layers in regulating the thickness of continental and oceanic thermal boundary layers. Earth Planet Sci Lett 230:379–395

    Article  Google Scholar 

  83. Lee C-TA, Luffi P, Plank T et al (2009) Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33

    Article  Google Scholar 

  84. Elkins Tanton LT, Grove TL, Donnelly-Nolan JM (2001) Hot, shallow mantle melting under the Cascades volcanic arc. Geology 29:631–634

    Article  Google Scholar 

  85. Drummond MS, Defant MJ, Kepezhinskas PK (1996) Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Trans R Soc Edinb 87:205–215

    Article  Google Scholar 

  86. Liu X-M, Rudnick RL (2011) Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proc Natl Acad Sci USA 109:19873–19875

    Google Scholar 

  87. Lee C-TA, Morton DM, Little MG et al (2008) Regulating continent growth and composition by chemical weathering. Proc Natl Acad Sci USA 105:4981–4985

    Article  Google Scholar 

  88. Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501–516

    Article  Google Scholar 

  89. Bateman PC, Clark LD, Huber NK, et al (1963) The Sierra Nevada batholith: a synthesis of recent work across the central part. In: US Geological Survey Professional Paper, vol 414-D, p 46

  90. Lee C-T, Yin Q-Z, Rudnick RL et al (2000) Osmium isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada, California. Science 289:1912–1916

    Article  Google Scholar 

  91. Haschke MR, Scheuber E, Günther D et al (2002) Evolutionary cycles during Andean orogeny: repeated slab breakoff and flat subduction? Terra Nova 14:49–55

    Article  Google Scholar 

  92. DeCelles PG, Ducea MN, Kapp P et al (2009) Cyclicity in Cordilleran orogenic systems. Nat Geosci 2:251–257

    Article  Google Scholar 

  93. Chin EJ, Lee C-TA, Tollstrup DL et al (2013) On the origin of hot metasedimentary quartzites in the lower crust of continental arcs. Earth Planet Sci Lett 361:120–133

    Article  Google Scholar 

  94. Plank T, Langmuir CH (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett 90:349–370

    Article  Google Scholar 

  95. Huang S, Lee C-TA, Yin Q-Z (2014) Missing lead and high 3He/4He in ancient sulfides associated with continental crust formation. Sci Rep. doi:10.1038/srep05314

    Google Scholar 

  96. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  97. Hirschmann MM, Stolper E (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124:185–208

    Article  Google Scholar 

  98. Hirschmann MM (2000) The mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosys 1:2000GC000070

  99. Kogiso T, Hirschmann MM, Frost DJ (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216:603–617

    Article  Google Scholar 

  100. Keshav S, Gudfinnsson GH, Sen G et al (2004) High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett 223:365–379

    Article  Google Scholar 

  101. Dasgupta R, Jackson MG, Lee C-TA (2010) Major element chemistry of ocean island basalts—conditions of mantle melting and heterogeneity of mantle source. Earth Planet Sci Lett 289:377–392

    Article  Google Scholar 

  102. Mallik A, Dasgupta R (2012) Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett 329–330:97–108

    Article  Google Scholar 

  103. Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146

    Article  Google Scholar 

  104. Le Roux V, Dasgupta R, Lee C-TA (2011) Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn Co, Ni and Zn partitioning during partial melting. Earth Planet Sci Lett 307:395–408

    Article  Google Scholar 

  105. Le Roux V, Lee C-TA, Turner SJ (2010) Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim Cosmochim Acta 74:2779–2796

    Article  Google Scholar 

  106. Liu Y, Gao S, Kelemen P et al (2008) Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta 72:2349–2376

    Article  Google Scholar 

  107. Sobolev AV, Hofmann AW, Sobolev SV et al (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  108. Leeman WP, Harry DL (1993) A binary source model for extension-related magmatism in the Great Basin, western North America. Science 262:1550–1554

    Article  Google Scholar 

  109. Lee C-TA, Shen B, Slotnick BS et al (2013) Continental arc-island arc fluctuations, growth of crustal carbonates and long-term climate change. Geosphere 9:21–36

    Article  Google Scholar 

  110. Jahn B-M, Wu FY, Chen B (2000) Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23:82–92

    Google Scholar 

  111. Bateman PC, Eaton JP (1967) The Sierra Nevada Batholith. Science 158:1407–1417

    Article  Google Scholar 

  112. Li X, Qi C, Liu Y et al (2005) Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze block: new constraints from Hf isotopes and Fe/Mn ratios. Chin Sci Bull 50:2481–2486

    Article  Google Scholar 

  113. Zhang J-J, Zheng Y-F, Zhao Z-F (2009) Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110:305–326

    Article  Google Scholar 

  114. Zheng X, Zhao Z-F, Zheng Y-F (2012) Slab–mantle interaction for thinning of cratonic lithospheric mantle in north China: geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos 146–147:202–217

    Google Scholar 

  115. Gao S, Rudnick RL, Yuan H-L et al (2004) Recycling lower continental crust in the North China Craton. Nature 432:03892–03897. doi:10.1038/nature03162

    Google Scholar 

  116. Liu Y, Shan G, Lee C-TA et al (2005) Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett 234:39–57

    Article  Google Scholar 

  117. Xu Y-G (2001) Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism. Phys Chem Earth A: Solid Earth Geod 26:747–757

    Article  Google Scholar 

  118. Menzies M, Xu Y, Zhang H (2007) Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96:1–21

    Article  Google Scholar 

  119. Niu Y (2014) Geological understanding of plate tectonics: basic concepts, illustrations, examples and new perspectives. Glob Tecton Metal 10:23–46

    Article  Google Scholar 

  120. Niu Y (2005) Generation and evolution of basaltic magmas: some basic concepts and a hypothesis for the origin of the Mesozoic–Cenozoic volcanism in eastern China. Geol J China Univ 11:9–46

    Google Scholar 

  121. Zheng JP, Lee C-TA, Lu JG et al (2015) Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents. Earth Planet Sci Lett 409:225–231

    Article  Google Scholar 

  122. Lee C-T (2001) The origin, evolution, and demise of continental lithospheric mantle: perspectives from Re–Os isotopes, geochemistry, petrology, and modeling. Harvard University, PhD Thesis

Download references

Acknowledgments

This work was supported by NSF (EAR-0309121, 0440033). The models were developed by Lee in 2000 as Chapter 7 of his PhD thesis [122]. In 2005, the paper was revived when D. Anderson was a Wiess Visiting professor at Rice University, but we never finished the paper. After D. Anderson’s death in December 2014 and a once in a decade effort to clean his office, Lee stumbled upon this paper again. The resurrected manuscript has been expanded and revised to bring it up to date. We thank H. Stone, M. Manga and R. J. O’Connell for inspiring simplicity.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cin-Ty A. Lee.

Additional information

Don L. Anderson—Deceased

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CT.A., Anderson, D.L. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Sci. Bull. 60, 1141–1156 (2015). https://doi.org/10.1007/s11434-015-0828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0828-6

Keywords

Navigation