Skip to main content
Log in

Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

A simple solution processing method was developed to grow large-scale well-aligned single crystals including 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), anthracene, tetracene, perylene, C60 and tetracyanoquinodimethane. As pinned by a solid needle, a droplet of semiconductor solution dried into single-crystal arrays on a 1 cm × 2 cm substrate. TIPS-pentacene was used to demonstrate the fabrication of hundreds of field-effect transistors (FETs) with the hole mobility as high as 6.46 cm2 V−1 s−1. As such, this work provides a high-throughput, yet efficient approach for statistical examination on the FET performance of organic single crystals.

摘要

有机半导体在场效应晶体管、太阳电池、发光二极管、存储器等众多领域具有广泛的应用前景。与有机半导体薄膜相比,其单晶中缺陷密度较小,因而有机单晶通常具有较高的载流子迁移率,使其成为探索有机材料本征性质和构筑高性能光电器件的最佳选择。目前有机单晶器件较多用于基础研究,而其向应用的过渡首先需要解决单晶大面积生长的难题,为单晶器件的大规模制备打下基础。本文采用一种改进的“固定液滴法”,使有机半导体液滴在金属针的固定下,随溶液蒸发,在表面张力的驱动下,由边缘向中心收缩,同时生长出取向一致的大面积有机单晶,并大规模制备了其场效应晶体管阵列,其迁移率居世界前列。这种方法可适用于多种有机半导体材料,从而为大规模制备有机单晶场效应晶体管阵列提供了一种简便高效的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sundar VC, Zaumseil J, Podzorov V et al (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303:1644–1646

    Article  Google Scholar 

  2. Podzorov V, Menard E, Borissov A et al (2004) Intrinsic charge transport on the surface of organic semiconductors. Phys Rev Lett 93:086602

    Article  Google Scholar 

  3. Jurchescu OD, Popinciuc M, van Wees BJ et al (2007) Interface-controlled, high-mobility organic transistors. Adv Mater 19:688–692

    Article  Google Scholar 

  4. Yamagishi M, Takeya J, Tominari Y et al (2007) High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators. Appl Phys Lett 90:182117

    Article  Google Scholar 

  5. Molinari AS, Alves H, Chen ZH et al (2009) High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors. J Am Chem Soc 131:2462–2463

    Article  Google Scholar 

  6. Li HY, Tee BCK, Cha JJ et al (2012) High-mobility field-effect transistors from large-area solution-grown aligned C-60 single crystals. J Am Chem Soc 134:2760–2765

    Article  Google Scholar 

  7. He P, Tu ZY, Zhao GY et al (2015) Tuning the crystal polymorphs of alkyl thienoacene via solution self-assembly toward air-stable and high-performance organic field-effect transistors. Adv Mater 27:825–830

    Article  Google Scholar 

  8. Zhou Y, Lei T, Wang L et al (2010) High-performance organic field-effect transistors from organic single-crystal microribbons formed by a solution process. Adv Mater 22:1484–1487

    Article  Google Scholar 

  9. Reese C, Bao ZN (2007) Organic single-crystal field-effect transistors. Mater Today 10:20–27

    Article  Google Scholar 

  10. Mas-Torrent M, Rovira C (2011) Role of molecular order and solid-state structure in organic field-effect transistors. Chem Rev 111:4833–4856

    Article  Google Scholar 

  11. Li RJ, Hu WP, Liu YQ et al (2010) Micro- and nanocrystals of organic semiconductors. Acc Chem Res 43:529–540

    Article  Google Scholar 

  12. Podzorov V (2013) Organic single crystals: addressing the fundamentals of organic electronics. MRS Bull 38:15–27

    Article  Google Scholar 

  13. Alves H, Molinari AS, Xie HX et al (2008) Metallic conduction at organic charge-transfer interfaces. Nat Mater 7:574–580

    Article  Google Scholar 

  14. Sirringhaus H, Sakanoue T, Chang JF (2012) Charge-transport physics of high-mobility molecular semiconductors. Phys Status Solidi B 249:1655–1676

    Article  Google Scholar 

  15. Yao Y, Si W, Yang WC et al (2013) Charge transport in organic semiconductors: from incoherent to coherent. Chin Sci Bull 58:2669–2676

    Article  Google Scholar 

  16. Di CA, Zhang FJ, Zhu DB (2013) Multi-functional integration of organic field-effect transistors (ofets): advances and perspectives. Adv Mater 25:313–330

    Article  Google Scholar 

  17. Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335

    Article  Google Scholar 

  18. Briseno AL, Mannsfeld SCB, Ling MM et al (2006) Patterning organic single-crystal transistor arrays. Nature 444:913–917

    Article  Google Scholar 

  19. Menard E, Meitl MA, Sun YG et al (2007) Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 107:1117–1160

    Article  Google Scholar 

  20. Mannsfeld SCB, Sharei A, Liu SH et al (2008) Highly efficient patterning of organic single-crystal transistors from the solution phase. Adv Mater 20:4044–4048

    Article  Google Scholar 

  21. Wang ZL, Bao RR, Zhang XJ et al (2011) One-step self-assembly, alignment, and patterning of organic semiconductor nanowires by controlled evaporation of confined microfluids. Angew Chem Int Ed 50:2811–2815

    Article  Google Scholar 

  22. Li HY, Giri G, Tok JBH et al (2013) Toward high-mobility organic field-effect transistors: control of molecular packing and large-area fabrication of single-crystal-based devices. MRS Bull 38:34–42

    Article  Google Scholar 

  23. Gong C, Deng W, Zou B et al (2014) Large-scale assembly of organic micro/nanocrystals into highly ordered patterns and their applications for strain sensors. ACS Appl Mater Interfaces 6:11018–11024

    Article  Google Scholar 

  24. Soeda J, Uemura T, Okamoto T et al (2013) Inch-size solution-processed single-crystalline films of high-mobility organic semiconductors. Appl Phys Express 6:076503

    Article  Google Scholar 

  25. Bae I, Kang SJ, Shin YJ et al (2011) Tailored single crystals of triisopropylsilylethynyl pentacene by selective contact evaporation printing. Adv Mater 23:3398–3402

    Article  Google Scholar 

  26. Liu SH, Wang WCM, Briseno AL et al (2009) Controlled deposition of crystalline organic semiconductors for field-effect-transistor applications. Adv Mater 21:1217–1232

    Article  Google Scholar 

  27. Oh JH, Lee HW, Mannsfeld S et al (2009) Solution-processed, high-performance n-channel organic microwire transistors. Proc Natl Acad Sci USA 106:6065–6070

    Article  Google Scholar 

  28. Yao YF, Jiang L, Dong HL et al (2013) Ordering of organic semiconductor films and their applications in devices. Chin Sci Bull (Chin Ver) 58:1683–1694 (in Chinese)

  29. Deng W, Zhang XJ, Wang JC et al (2014) Very facile fabrication of aligned organic nanowires based high-performance top-gate transistors on flexible, transparent substrate. Org Electron 15:1317–1323

    Article  Google Scholar 

  30. Li HY, Fan CC, Vosgueritchian M et al (2014) Solution-grown aligned C-60 single-crystals for field-effect transistors. J Mater Chem C 2:3617–3624

    Article  Google Scholar 

  31. Liu Y, Han YJ, Zhao XL et al (2014) Single-crystal tetrathiafulvalene microwire arrays formed by drop-casting method in the saturated solvent atmosphere. Synth Met 198:248–254

    Article  Google Scholar 

  32. Lee WH, Kim DH, Jang Y et al (2007) Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors. Appl Phys Lett 90:132106

    Article  Google Scholar 

  33. Uemura T, Hirose Y, Uno M et al (2009) Very high mobility in solution-processed organic thin-film transistors of highly ordered [1]benzothieno[3,2-b]benzothiophene derivatives. Appl Phys Express 2:111501

    Article  Google Scholar 

  34. Mukherjee B, Shin TJ, Sim K et al (2010) Periodic arrays of organic crystals on polymer gate dielectric for low-voltage field-effect transistors and complementary inverter. J Mater Chem 20:9047–9051

    Article  Google Scholar 

  35. Fan CC, Zoombelt AP, Jiang H et al (2013) Solution-grown organic single-crystalline p-n junctions with ambipolar charge transport. Adv Mater 25:5762–5766

    Article  Google Scholar 

  36. Li HY, Fan CC, Fu WF et al (2015) Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics. Angew Chem Int Ed 54:956–960

    Article  Google Scholar 

  37. Kim YH, Yoo B, Anthony JE et al (2012) Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing. Adv Mater 24:497–502

    Article  Google Scholar 

  38. Chou WY, Cheng HL (2004) An orientation-controlled pentacene film aligned by photoaligned polyimide for organic thin-film transistor applications. Adv Funct Mater 14:811–815

    Article  Google Scholar 

  39. Sakamoto K, Bulgarevich K, Miki K (2014) Small device-to-device variation of 6,13-bis(triisopropylsilylethynyl)pentacene field-effect transistor arrays fabricated by a flow-coating method. Jpn J Appl Phys 53:02BE01

    Article  Google Scholar 

  40. Xue GB, Fan CC, Wu JK et al (2015) Ambipolar charge transport of tips-pentacene single-crystals grown from non-polar solvents. Mater Horiz 2:344–349

    Article  Google Scholar 

  41. Payne MM, Parkin SR, Anthony JE et al (2005) Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2 V−1 s−1. J Am Chem Soc 127:4986–4987

    Article  Google Scholar 

  42. Kim DH, Lee DY, Lee HS et al (2007) High-mobility organic transistors based on single-crystalline microribbons of triisopropylisilylethynl pentacene via solution-phase self-assembly. Adv Mater 19:678–682

    Article  Google Scholar 

  43. Diao Y, Tee BCK, Giri G et al (2013) Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater 12:665–671

    Article  Google Scholar 

  44. Giri G, Verploegen E, Mannsfeld SCB et al (2011) Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 480:504

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2014CB643503), the National Natural Science Foundation of China (51222302, 51373150, 51461165301), Zhejiang Provincial Natural Science Foundation (LZ13E030002) and Fundamental Research Funds for the Central Universities. Huolin L. Xin is supported by the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the Office of Basic Energy Sciences, United States Department of Energy (DE-SC0012704).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ying Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10494 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wu, JK., Fan, CC. et al. Large-scale fabrication of field-effect transistors based on solution-grown organic single crystals. Sci. Bull. 60, 1122–1127 (2015). https://doi.org/10.1007/s11434-015-0817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0817-9

Keywords

Navigation