Skip to main content
Log in

Insights on evolution of virulence and resistance from the whole-genome analysis of a predominant methicillin-resistant Staphylococcus aureus clone sequence type 239 in China

  • Article
  • Microbiology
  • Published:
Chinese Science Bulletin

Abstract

Earlier, we reported that ST239 was the 15-year predominant methicillin-resistant Staphylococcus aureus (MRSA) clone in China. In this study, MRSA strain CN79 belonging to ST239 and isolated from blood was used to determine the whole genome sequence. Comparative genomics analysis was done between MRSA CN79 and 25 sequenced S. aureus in the NCBI GenBank database. A total of 2,734 protein-encoding genes were identified in the MRSA CN79 genome, which carries 11 antibiotic resistance genes and 65 virulence genes. Two prophages phiCN79A and phiNM3-like were found on the MRSA CN79 genome. MRSA CN79 carries 30 specific genes that are absent from the 25 sequenced S. aureus genomes. Most of them were prophage-related genes. Several antibiotic resistance genes, such as β-lactamase and ABC-type multidrug transport system gene, were located on the genomic island νSaβ. The antibiotic resistance genes, such as tet (M), ermA1, and blaZ, were also located on different transposons. The virulence genes sea, map, hlb, and sak are located on phiNM3-like prophage and the exotoxin genes are carried on the genomic island νSaα. These results suggest that ST239 MRSA strains are widespread owing to horizontal acquisition of the mobile genetic elements harbored antibiotic resistance genes and virulence genes in response to environmental selective pressures, such as antibiotics and the human immune system during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang H, Liu Y, Sun H et al (2008) In vitro activity of ceftobiprole, linezolid, tigecycline, and 23 other antimicrobial agents against Staphylococcus aureus isolates in China. Diagn Microbiol Infect Dis 62:226–229

    Article  Google Scholar 

  2. Sun W, Chen H, Liu Y et al (2009) Prevalence and characterization of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates from 14 cities in China. Antimicrob Agents Chemother 53:3642–3649

    Article  Google Scholar 

  3. Wang SH, Khan Y, Hines L et al (2012) Methicillin-resistant Staphylococcus aureus sequence type 239-III, Ohio, USA, 2007–2009. Emerg Infect Dis 18:1557–1565

    Article  Google Scholar 

  4. Song JH, Hsueh PR, Chung DR et al (2011) Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J Antimicrob Chemother 66:1061–1069

    Article  Google Scholar 

  5. Jackson CR, Davis JA, Barrett JB (2013) Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. J Clin Microbiol 51:1199–1207

    Article  Google Scholar 

  6. Teixeira LA, Resende CA, Ormonde LR et al (1995) Geographic spread of epidemic multiresistant Staphylococcus aureus clone in Brazil. J Clin Microbiol 33:2400–2404

    Google Scholar 

  7. Corso A, Santos Sanches I, Aires de Sousa M et al (1998) Spread of a methicillin-resistant and multiresistant epidemic clone of Staphylococcus aureus in Argentina. Microb Drug Resist 4:277–288

    Article  Google Scholar 

  8. Aires De Sousa M, Miragaia M, Sanches IS et al (2001) Three-year assessment of methicillin-resistant Staphylococcus aureus clones in Latin America from 1996 to 1998. J Clin Microbiol 39:2197–2205

    Article  Google Scholar 

  9. Aires de Sousa M, Sanches IS, Ferro ML et al (1998) Intercontinental spread of a multidrug-resistant methicillin-resistant Staphylococcus aureus clone. J Clin Microbiol 36:2590–2596

    Google Scholar 

  10. Melter O, Santos Sanches I, Schindler J et al (1999) Methicillin-resistant Staphylococcus aureus clonal types in the Czech Republic. J Clin Microbiol 37:2798–2803

    Google Scholar 

  11. Aires de Sousa M, Bartzavali C, Spiliopoulou I et al (2003) Two international methicillin-resistant Staphylococcus aureus clones endemic in a university hospital in Patras, Greece. J Clin Microbiol 41:2027–2032

    Article  Google Scholar 

  12. Delgado A, Riordan JT, Lamichhane-Khadka R et al (2007) Hetero-vancomycin-intermediate methicillin-resistant Staphylococcus aureus isolate from a medical center in Las Cruces. New Mexico. J Clin Microbiol 45:1325–1329

    Article  Google Scholar 

  13. Kuroda M, Ohta T, Uchiyama I et al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240

    Article  Google Scholar 

  14. Feng Y, Chen CJ, Su LH et al (2008) Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 32:23–37

    Article  Google Scholar 

  15. Chen H, Liu Y, Jiang X et al (2010) Rapid change of methicillin-resistant Staphylococcus aureus clones in a Chinese tertiary care hospital over a 15-year period. Antimicrob Agents Chemother 54:1842–1847

    Article  Google Scholar 

  16. Li R, Li Y, Kristiansen K et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  Google Scholar 

  17. Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75

    Article  Google Scholar 

  18. Bose M, Barber RD (2006) Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 6:223–227

    Google Scholar 

  19. Siguier P, Perochon J, Lestrade L et al (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36

    Article  Google Scholar 

  20. Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147

    Article  Google Scholar 

  21. Xu Z, Hao B (2009) CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res 37:W174–W178

    Article  Google Scholar 

  22. Liu B, Pop M (2009) ARDB—Antibiotic Resistance Genes Database. Nucleic Acids Res 37:D443–D447

    Article  Google Scholar 

  23. Chen L, Xiong Z, Sun L et al (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:D641–D645

    Article  Google Scholar 

  24. Rouch DA, Cram DS, DiBerardino D et al (1990) Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4:2051–2062

    Article  Google Scholar 

  25. Tanaka M, Wang T, Onodera Y et al (2000) Mechanism of quinolone resistance in Staphylococcus aureus. J Infect Chemother 6:131–139

    Article  Google Scholar 

  26. Cui L, Neoh HM, Shoji M et al (2009) Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 53:1231–1234

    Article  Google Scholar 

  27. Zmantar T, Chaieb K, Makni H et al (2008) Detection by PCR of adhesins genes and slime production in clinical Staphylococcus aureus. J Basic Microbiol 48:308–314

    Article  Google Scholar 

  28. Patti JM, Jonsson H, Guss B et al (1992) Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J Biol Chem 267:4766–4772

    Google Scholar 

  29. Downer R, Roche F, Park PW et al (2002) The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. J Biol Chem 277:243–250

    Article  Google Scholar 

  30. Josefsson E, McCrea KW, Ní Eidhin D et al (1998) Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144:3387–3395

    Article  Google Scholar 

  31. Cheng AG, Kim HK, Burts ML et al (2009) Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23:3393–3404

    Article  Google Scholar 

  32. Tung HS, Guss B, Hellman U et al (2000) A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochem J 345:611–619

    Article  Google Scholar 

  33. Sitkiewicz I, Babiak I, Hryniewicz W (2011) Characterization of transcription within sdr region of Staphylococcus aureus. Antonie Van Leeuwenhoek 99:409–416

    Article  Google Scholar 

  34. Torres VJ, Pishchany G, Humayun M et al (2006) Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J Bacteriol 188:8421–8429

    Article  Google Scholar 

  35. Voyich JM, Otto M, Mathema B et al (2006) Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis 194:1761–1770

    Article  Google Scholar 

  36. Lee LY, Miyamoto YJ, McIntyre BW et al (2002) The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 110:1461–1471

    Article  Google Scholar 

  37. Donegan NP, Thompson ET, Fu Z et al (2010) Proteolytic regulation of toxin–antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192:1416–1422

    Article  Google Scholar 

  38. Rice K, Peralta R, Bast D et al (2001) Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect Immun 69:159–169

    Article  Google Scholar 

  39. Bokarewa MI, Jin T, Tarkowski A (2006) Staphylococcus aureus: staphylokinase. Int J Biochem Cell Biol 38:504–509

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Beijing Natural Science Foundation (7102130), the Program for New Century Excellent Talents in University (NCET-10-0205), the National Natural Science Foundation of China (31100106) and Key Projects in the National Science & Technology Pillar Program (2012EP001002). The authors thank International Science Editing for polishing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoli Zhu or Hui Wang.

Additional information

Hongbin Chen and Xi Yang contributed equally to this work.

About this article

Cite this article

Chen, H., Yang, X., Wang, Q. et al. Insights on evolution of virulence and resistance from the whole-genome analysis of a predominant methicillin-resistant Staphylococcus aureus clone sequence type 239 in China. Chin. Sci. Bull. 59, 1104–1112 (2014). https://doi.org/10.1007/s11434-014-0149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0149-1

Keywords

Navigation