, Volume 52, Issue 24, pp 3385-3392

A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The evolutionary success of arthropods, the most abundant and diverse animal group, is mainly based on their segmented body and jointed appendages, features that had evolved most likely already before the Cambrian. The first arthropod-like animals, the lobopodians from the Early Cambrian, were unsclerotized and worm-like, and they had unjointed tubular legs. Here we describe the first three-dimensionally preserved Cambrian lobopodian. The material presented of Orstenotubulus evamuellerae gen. et sp. nov. is the smallest and youngest of a lobopodian known. O. evamuellerae shows strikingly detailed similarities to Recent tardigrades and/or onychophorans in its cellular-structured cuticle and the telescopic spines. It also shows similarities to other, longer known lobopodians, but which are ten times as large as the new form. These similarities include the finely annulated body and legs, which is characteristic also for Recent onychophorans, and paired humps continuing into spines situated dorsally to the leg insertions, a feature lacking in the extant forms. The morphology of O. evamuellerae not only elucidates our knowledge about lobopodians, but also aids in a clearer picture of the early evolution of arthropods. An example is the single ventral gonopore between a limb pair of O. evamuellerae, which indicates that a single gonopore, as developed in onychophorans, tardigrades, pentastomids, myriapods and insects, might represent the plesiomorphic state for Arthropoda, while the paired state in chelicerates and crustaceans was convergently achieved. Concerning life habits, the lateral orientation of the limbs and their anchoring spines of the new lobopodian imply that early arthropods were crawlers rather than walkers.