Skip to main content
Log in

Precision of future experiments measuring primordial tensor fluctuation

  • Article
  • Special Topic: BICEP2 and Beyond
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently the second phase of Background Imaging of Cosmic Extragalactic Polarization (BICEP2) claimed a detection of the tensor-to-scalar ratio (r) of primordial fluctuation at 5ρ confidence level. If it is true, this large and measurable amplitude (r ∼- 0.2) of B-mode polarization indicates that it is possible to measure the shape of CMB B-mode polarization with future experiments. Given the current understanding of the experimental noise and foreground contamination, we forecast the precision of r and the tensor spectral index n t measurements from Planck, Spider and POLARBEAR with n t as a free parameter. We quantitatively determine the signal-to-noise of the measurement in r-n t parameter space for the three experiments. The forecasted signal-to-noise ratio of the B-mode polarization somewhat depends on n t, but strongly depends on the true value of r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. BICEP2 Collaboration. BICEP2 I: Detection Of B-mode polarization at degree angular scales. arXiv:1403.3985 [astro-ph.CO]

  2. Ma Y Z, Wang Y. Reconstructing the local potential of inflation with BICEP2 data. arXiv:1403.4585 [astro-ph.CO]

  3. Xia J Q, Cai Y F, Li H, et al. Evidence for bouncing evolution before inflation after BICEP2. arXiv:1403.7623 [astro-ph.CO]

  4. Cai Y F, Quintin J, Saridakis E N, et al. Nonsingular bouncing cosmologies in light of BICEP2. arXiv:1404.4364 [astro-ph.CO]

  5. Cai Y-F. Exploring bouncing cosmologies with cosmological surveys. Sci China-Phys Mech Astron, 2014, 57(8): 1414–1430

    Article  Google Scholar 

  6. Gerbino M, Marchini A, Pagano L, et al. Blue gravity waves from BICEP2? arXiv:1403.5732 [astro-ph.CO]

  7. Wang Y, Xue W. Inflation and alternatives with blue tensor spectra. arXiv:1403.5817 [astro-ph.CO]

  8. Ashoorioon A, Dimopoulos K, Sheikh-Jabbari M M, et al. Non-bunch-Davis initial state reconciles chaotic models with BICEP and Planck. arXiv:1403.6099 [hep-th]

  9. Smith K M, Dvorkin C, Boyle L, et al. On quantifying and resolving the BICEP2/Planck tension over gravitational waves. arXiv:1404.0373 [astro-ph.CO]

  10. Planck Collaboration. Planck 2013 results. XV. CMB power spectra and likelihood. arXiv:1303.5075 [astro-ph.CO]

  11. Cai Y F, Wang Y. Testing quantum gravity effects with latest CMB observations. arXiv:1404.6672 [astro-ph.CO]

  12. Wu F, Li Y, Lu Y, et al. Cosmological parameter fittings with the BICEP2 data. arXiv:1403.6462 [astro-ph.CO]

  13. Li H, Xia J Q, Zhang X M. Global fitting analysis on cosmological models after BICEP2. arXiv:1404.0238 [astro-ph.CO]

  14. Crill B P, Ade P A R, Battistelli E S, et al. SPIDER: A balloon-borne large-scale CMB polarimeter. SPIE, 2008, 7010: 79

    ADS  Google Scholar 

  15. POLARBEAR Collaboration. A measurement of the cosmic microwave background B-mode polarization power spectrum at subdegree scales with POLARBEAR. arXiv: 1403.2369 [astro-ph.CO]

  16. Lewis A, Challinor A, Lasenby A. Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models. Astrophys J, 2000, 538: 473–476, http://www.camb.info

    Article  ADS  Google Scholar 

  17. Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys Rev D, 2002, 66: 103511

    Article  ADS  Google Scholar 

  18. Liddle A R, Lyth D H. The cold dark matter density perturbation. Phys Rept, 1993, 231: 1–105

    Article  ADS  Google Scholar 

  19. Ma Y Z, Zhao W, Brown M L. Testing early Universe models from B-mode polarization. J Cosmol Astropart Phys, 2010, 10: 007

    Article  ADS  Google Scholar 

  20. Planck Collaboration. Planck: The scientific programme. European Space Agency Vol. No. ESA-SCI (2005)1. In: Efstathiou G, ed. Netherlands: ESA Publications, Noordwijk, 2005

  21. Tegmark M, Taylor A, Heavens A. Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets? Astrophys J, 1997, 480: 22–35

    Article  ADS  Google Scholar 

  22. Tegmark M. Measuring cosmological parameters with galaxy surveys. Phys Rev Lett, 1997, 79: 3806–3809

    Article  ADS  Google Scholar 

  23. Seljak U, Hirata C M. Gravitational lensing as a contaminant of the gravity wave signal in CMB. Phys Rev D, 2004, 69: 043005

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or YinZhe Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ma, Y. Precision of future experiments measuring primordial tensor fluctuation. Sci. China Phys. Mech. Astron. 57, 1466–1470 (2014). https://doi.org/10.1007/s11433-014-5510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5510-5

Keywords

Navigation