Skip to main content
Log in

Tidal evolution of exo-planetary systems: WASP-50, GJ 1214 and CoRoT-7

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We perform numerical simulations to investigate tidal evolution of two single-planet systems, that is, WASP-50 and GJ 1214 and a two-planet system CoRoT-7. The results of orbital evolution show that tidal decay and circularization may play a significant role in shaping their final orbits, which is related to the initial orbital data in the simulations. For GJ 1214 system, different cases of initial eccentricity are also considered as only an upper limit of its eccentricity (0.27) is shown, and the outcome suggests a possible maximum initial eccentricity (0.4) in the adopted dynamical model. Moreover, additional runs with alternative values of dissipation factor Q1 are carried out to explore tidal evolution for GJ 1214b, and these results further indicate that the real Q1 of GJ 1214b may be much larger than its typical value, which may reasonably suggest that GJ 1214b bears a present-day larger eccentricity, undergoing tidal circularization at a slow rate. For the CoRoT-7 system, tidal forces make two planets migrating towards their host star as well as producing tidal circularization, and in this process tidal effects and mutual gravitational interactions are coupled with each other. Various scenarios of the initial eccentricity of the outer planet have also been done to investigate final planetary configuration. Tidal decay arising from stellar tides may still work for each system as the eccentricity decreases to zero, and this is in association with the remaining lifetime of each planet used to predict its future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://exoplanet.eu

  2. Murray C D, Dermott S F. Solar System Dynamics. New York: Cambridge Univ Press, 1999

    MATH  Google Scholar 

  3. Jackson B, Barnes R, Greenberg R. Observation evidence for tidal destruction of exoplanets. Astrophys J, 2009, 698: 1357–1366

    Article  ADS  Google Scholar 

  4. Lanza A F. Hot Jupiters and the evolution of stellar angular momentum. Astron Astrophys, 2010, 512: 77–91

    Article  ADS  Google Scholar 

  5. Lissauer J J. Planet formation. Ann Rev Astron Astrophys, 1993, 31: 129–174

    Article  ADS  Google Scholar 

  6. Rasio F A, Ford E B. Dynamical instabilities and the formation of extrasolar planetary systems. Science, 1996, 274: 954–956

    Article  ADS  Google Scholar 

  7. Zhou J L, Aarseth S J, Lin D N C, et al. Origin and ubiquity of shortperiod earth-like planets: evidence for the sequential accretion theory of planet of formation. Astrophys J, 2005, 631: L85–L88

    Article  ADS  Google Scholar 

  8. Ji J H, Jin S, Tinney C G. Forming close-in earth-like planets via a collision-merger mechanism in late-stage planet formation. Astrophys J, 2011, 727: L5–L8

    Article  ADS  Google Scholar 

  9. Jin S, Ji J H. Terrestrial planet formation in inclined systems: application to the OGLE-2006-BLG-109L system. Mon Not Roy Astron Soc, 2011, 418: 1335–1345

    Article  ADS  Google Scholar 

  10. Lin D, Bodenheimer P, Richardson D. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature, 1996, 380: 606–607

    Article  ADS  Google Scholar 

  11. Goldreich P. Disk-satellite interactions. Astrophys J, 1980, 241: 425–441

    Article  MathSciNet  ADS  Google Scholar 

  12. Fabrycky D, Tremaine S. Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction. Astrophys J, 2007, 669: 1298–1315

    Article  ADS  Google Scholar 

  13. Ford E B, Rasio F A. on the relation between hot Jupiters and the Roche limit. Astrophys J, 2006, 638: L45–L48

    Article  ADS  Google Scholar 

  14. Rasio F A, Tout C A, Lubow S H, et al. Tidal decay of close planetary orbits. Astrophys J, 1996, 470: 1187–1191

    Article  ADS  Google Scholar 

  15. Zhou J L, Lin D N C. Migration and Final Location of Hot Super Earths in the Presence of Gas Giants. In: IAU Symp. 249, Exoplanets: Detection, Formation and Dynamics. ed. Sun Y S, Ferraz-Mello S, Zhou J L, eds. Suzhou, China, 2008, 319. 285–289

  16. Rodrıguez A, Ferraz-Mello S, Michtchenko T A, et al. Tidal decay and orbital circularization in close-in two-planet systems. Mon Not Roy Astron Soc, 2011, 415: 2349–2358

    Article  ADS  Google Scholar 

  17. Dobbs-Dixon I, Lin D N C, Mardling R A. Spin-Orbit Evolution of Short-Period Planets. Astrophys J, 2004, 610: 464–476

    Article  ADS  Google Scholar 

  18. Beutler G. Methods of Celestial Mechanics. Vol. I: Physical, mathematical, and numerical principles. Berlin: Springer, 2005

    MATH  Google Scholar 

  19. Mignard F. The evolution of the lunar orbit revisited. I. Earth Moon Planets, 1979, 20: 301–315

    Article  ADS  MATH  Google Scholar 

  20. Mardling R A, Lin D N C. Calculating the tidal, spin, and dynamical evolution of extrasolar planetary systems. Astrophys J, 2002, 573: 829–844

    Article  ADS  Google Scholar 

  21. Chambers J E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon Not Roy Astron Soc, 1999, 304: 793–799

    Article  ADS  Google Scholar 

  22. Stoer J, Bulirsch R. Introduction to Numerical Analysis. New York: Springer Verlag, 1980 Soc, 1999, 304: 793–799

    Google Scholar 

  23. Gillon M, Doyle A P, Lendl M, et al. WASP-50b: a hot Jupiter transiting a moderately active solar-type star. Astron Astrophys, 2011, 533: 88–95

    Article  ADS  Google Scholar 

  24. Goldreich P, Soter S. Q in the Solar System. Icarus, 1966, 5: 375–389

    Article  ADS  Google Scholar 

  25. Levrard B, Winisdoerffer C, Chabrier G. Falling transiting extrasolar giant planets. Astrophys J, 2009, 692: L9–L13

    Article  ADS  Google Scholar 

  26. Charbonneau D, Berta Z K, Irwin J. A super-Earth transiting a nearby low-mass star. Nature, 2009, 462: 891–894

    Article  ADS  Google Scholar 

  27. Carter J A, Winn J N, Holman M J, et al. The transit light curve project, XIII. sixteen transits of he super-earth GJ 1214b. Astrophys J, 2011, 730: 82–91

    Article  ADS  Google Scholar 

  28. Léger A, Rouan D, Schneider J, et al. Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first super-Earth with measured radius. Astron Astrophys, 2009, 506: 287–302

    Article  ADS  Google Scholar 

  29. Queloz D, Bouchy F, Moutou C, et al. The CoRoT-7 planetary system: two orbiting super-Earths. Astron Astrophys, 2009, 506: 303–319

    Article  ADS  Google Scholar 

  30. Ferraz-Mello S, Tadeu D S M, Beaugé C, et al. On the mass determination of super-Earths orbiting active stars: the CoRoT-7 system. Astron Astrophys, 2011, 531: 161–171

    Article  ADS  Google Scholar 

  31. Mardling R A. Long-term tidal evolution of short-period planets with companions. Mon Not Roy Astron Soc, 2007, 382: 1768–1790

    ADS  Google Scholar 

  32. Huang C, Liu L. Analytical solutions to the four post-Newtonian effects in a near-earth satellite orbit. Celest Mech Dyn Astr, 1992, 53: 293–307

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangHui Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Ji, J. Tidal evolution of exo-planetary systems: WASP-50, GJ 1214 and CoRoT-7. Sci. China Phys. Mech. Astron. 55, 872–879 (2012). https://doi.org/10.1007/s11433-012-4707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4707-8

Keywords

Navigation