Science China Physics, Mechanics and Astronomy

, Volume 55, Issue 4, pp 671–683

Research on the transfers to Halo orbits from the view of invariant manifolds


DOI: 10.1007/s11433-012-4680-2

Cite this article as:
Xu, M., Tan, T. & Xu, S. Sci. China Phys. Mech. Astron. (2012) 55: 671. doi:10.1007/s11433-012-4680-2


This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth’s gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.


libration pointHalo orbittransfer trajectoryinvariant manifoldslow thrustlunar perturbation

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Beijing University of Aeronautics and AstronauticsBeijingChina
  2. 2.DFH Satellite Co. Ltd.BeijingChina