Skip to main content
Log in

Studies of solar flares and CMEs related to the space solar missions in the future

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Solar eruptions and the related processes involve magnetic fields and plasma flows of various scales in both time and space. These processes include the convective motions of the mass and magnetic field in the photosphere, evolutions of magnetic fields in both the chromosphere and the corona prior to and during the disruption of magnetic fields in response to the photospheric motions. These evolutions constitute a whole process of transporting the magnetic energy and the helicity from the photosphere to the corona, and then to interplanetary space. The present work, on the basis of a solar eruption model, discusses these processes, and the related questions, unanswerable at present, but could be the scientific objectives of the space solar missions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forbes T G, Linker J A, Chen J, et al. CME theory and models. Space Sci Rev, 2006, 123: 251–302

    Article  ADS  Google Scholar 

  2. Zhang M, Low B -C. The hydromagnetic nature of solar coronal mass ejections. Annu Rev Astron Astrophys, 2005, 43: 103–137

    Article  ADS  Google Scholar 

  3. Chen P. Initiation and propagation of coronal mass ejections. J Astrophys Astron, 2008, 29: 179–186

    Article  ADS  Google Scholar 

  4. Lin J, Soon W, Baliunas S L. Theories of solar eruptions: A review. New Astron Rev, 2003, 47: 53–84

    Article  ADS  Google Scholar 

  5. Webb D F, Burkepile J, Forbes T G, et al. Observational evidence of new current sheets trailing coronal mass ejections. J Geophys Res, 2003, 108(A12): 1400

    Article  Google Scholar 

  6. Berger M A. Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys Astrophys Fluid Dyn, 1984, 30: 79–104

    Article  ADS  Google Scholar 

  7. Zhang M, Flyer N. The dependence of the helicity bound of force-free magnetic fields on boundary conditions. Astrophys J, 2008, 683: 1160–1167

    Article  ADS  Google Scholar 

  8. Zhang Y, Tan B, Yan Y. Correlation between the sharp variation of the transport rate of magnetic helicity and solar eruptive events. Astrophys J, 2008, 682: L133–L136

    Article  ADS  Google Scholar 

  9. Forbes T G. A review on the genesis of coronal mass ejections. J Geophys Res, 2000, 105: 23153–23166

    Article  ADS  Google Scholar 

  10. Zhang H. Observational study of magnetic chirality of solar active regions. Adv Space Res, 2008, 42: 1480–1491

    Article  ADS  Google Scholar 

  11. Li K, Schmieder B, Li Q. Statistical analysis of the X-ray flares (M ≥ 1) during the maximum period of solar cycle 22. Astron Astrophys Suppl, 1998, 131: 99–104

    Article  ADS  Google Scholar 

  12. Livi S H B, Wang J, Martin S F. The cancellation of magnetic flux. I — On the quiet sun. Aust J Phys, 1985, 38: 855–873

    ADS  Google Scholar 

  13. Wang J, Shi Z, Martin S F, et al. The cancellation of magnetic flux on the quiet sun. Vista Astron, 1988, 31: 79–83

    Article  ADS  Google Scholar 

  14. Wang J, Shi Z, Martin S F. Filament disturbance and associated magnetic changes in the filament environment. Astron Astrophys, 1996, 316: 201–214

    ADS  Google Scholar 

  15. Zhang J, Wang J, Nitta N. A filament-associated Halo coronal mass ejection. Chin J Astron Astrophys, 2001, 1: 85–98

    Article  ADS  Google Scholar 

  16. Contarino L, Romano P, Zuccarello F. Canceling magnetic feature and filament activation. Astron Nachr, 2006, 327(7): 674–679

    Article  MATH  ADS  Google Scholar 

  17. van Ballegooijen A A, Martens P C H. Formation and eruption of solar prominences. Astrophys J, 1989, 343: 971–984

    Article  ADS  Google Scholar 

  18. Mackay D H, van Ballegooijen A A. New results in modeling the hemispheric pattern of solar filaments. Astrophys J, 2005, 621: L77–L80

    Article  ADS  Google Scholar 

  19. Heyvaerts J, Priest E R, Rust D M. An emerging flux model for the solar flare phenomenon. Astrophys J, 1977, 216: 123–137

    Article  ADS  Google Scholar 

  20. Feynman J, Martin S F. The initiation of coronal mass ejections by newly emerging magnetic flux. J Geophys Res, 1995, 100(A3): 3355–3367

    Article  ADS  Google Scholar 

  21. Liu Y, Su J, Morimoto T, et al. Observations of an emerging flux region surge: Implications for coronal mass ejections triggered by emerging flux. Astrophys J, 2005, 628: 1056–1060

    Article  ADS  Google Scholar 

  22. Liu J, Zhang H. The magnetic field, horizontal motion and helicity in a fast emerging flux region which eventually forms a delta spot. Sol Phys, 2006, 234: 21–40

    Article  ADS  Google Scholar 

  23. Zhang Y, Zhang M, Zhang H. On the relationship between flux emergence and CME initiation. Sol Phys, 2008, 250: 75–88

    Article  ADS  Google Scholar 

  24. Tang Y, Li Y, Fang C, et al. Hα and soft X-ray brightening events caused by emerging flux. Astrophys J, 2000, 534: 482–489

    Article  ADS  Google Scholar 

  25. Leka K D, Canfield R C, McClymont A N, et al. Evidence for current-carrying emerging flux. Astrophys J, 1996, 462: 547–560

    Article  ADS  Google Scholar 

  26. Lin J, Forbes T G, Isenberg P A. Prominence eruptions and coronal mass ejections triggered by newly emerging flux. J Geophys Res, 2001, 106(A11): 25053–25074

    Article  ADS  Google Scholar 

  27. Zhang H, Bao X, Zhang Y, et al. Three super active regions in the descending phase of solar cycle 23. Chin J Astron Astrophys, 2003, 3: 491–494

    Article  ADS  Google Scholar 

  28. Li H, Schmieder B, Aulanier G, et al. Is pre-eruptive null point reconnection required for triggering eruptions? Sol Phy, 2006, 237: 85–100

    Article  ADS  Google Scholar 

  29. Archontis V, Török T. Eruption of magnetic flux ropes during flux emergence. Astron Astrophys, 2008, 492: L35–L38

    Article  ADS  Google Scholar 

  30. Zhang L, Wang H, Du Z, et al. Long-term behavior of active longitudes for sol X-ray flares. Astron Astrophys, 2007, 471: 711–716

    Article  ADS  Google Scholar 

  31. Wang H, Cui Y, Li R, et al. Solar flare forecasting model supported with artificial neural network technique. Adv Space Rev, 2008, 42: 1464–1468

    Article  ADS  Google Scholar 

  32. Furth H P, J Killeen J, Rosenbluth M N. Finite-resistivity instabilities of a sheet pinch. Phys Fluids, 1963, 6: 459–484

    Article  ADS  Google Scholar 

  33. Priest E R. The magnetohydrodynamics of current sheets. Rep Prog Phys, 1985, 48: 955–1090

    Article  ADS  Google Scholar 

  34. Priest E R, Forbes T G. Magnetic Reconnection: MHD Theory and Applications. New York: Cambridge University Press, 2000

    MATH  Google Scholar 

  35. Liu W, Chen P, Fang C, et al. Evolution of electron energy spectrum during solar flares. Adv Space Rev, 2007, 39: 1394–1397

    Article  ADS  Google Scholar 

  36. Poletto G, Kopp R A. Macroscopic electric fields during two-ribbon flares. In “The lower atmosphere of solar flares; Proceedings of the Solar Maximum Mission Symposium”, Sunspot, NM, Aug. 20–24, 1985. Sunspot, NM, National Solar Observatory, 1986. 453–465

  37. Lin J, Forbes T G, Priest E R, et al. Models for the motions of flare loops and ribbons. Sol Phys, 1995, 159: 275–299

    Article  ADS  Google Scholar 

  38. Wang H, Qiu J, Jing J, et al. Study of ribbon separation of a flare associated with a quiescent filament eruption. Astrophys J, 2003, 593: 564–570

    Article  ADS  Google Scholar 

  39. Qiu J, Wang H, Cheng C, et al. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys J, 2004, 604: 900–905

    Article  ADS  Google Scholar 

  40. Jiang Y, Shen Y, Bi Y, et al. Magnetic interaction: A transequatorial jet and interconnecting loops. Astrophys J, 2008, 677: 699–703

    Article  ADS  Google Scholar 

  41. Lin J, van Ballegooijen A A. Equilibrium and evolution in multipolar magnetic configurations resulting from interactions among active regions. Astrophys J, 2005, 629: 582–591

    Article  ADS  Google Scholar 

  42. Švestka Z. Solar Flares. Berlin, Heidelberg: Springer-Verlag, 1976

    Google Scholar 

  43. Švestka Z, Fontenla J M, Machado M E, et al. Multi-thermal observations of newly formed loops in a dynamic flare. Sol Phys, 1987, 108: 237–250

    Article  ADS  Google Scholar 

  44. Gan W, Rieger E, Fang C. Semiempirical flare models with chromospheric condensation. Astrophys J, 1993, 416: 886–892

    Article  ADS  Google Scholar 

  45. Lin J. Motions of flare ribbons and loops in various magnetic configurations. Sol Phys, 2004, 222: 115–136

    Article  ADS  Google Scholar 

  46. Ji H, Huang G, Wang H, et al. Converging motion of Hα conjugate kernels. The signature of fast relaxation of a sheared magnetic field. Astrophys J, 2006, 636: L173–L174

    Article  ADS  Google Scholar 

  47. Ji H, Wang H, Liu C, et al. A hard X-ray sigmoidal structure during the initial phase of the 2003 October 29 X10 flare. Astrophys J, 2008, 680: 734–739

    Article  ADS  Google Scholar 

  48. Lin J, Raymond J C, van Ballegooijen A A. The role of magnetic reconnection in the observable features of solar eruptions. Astrophys J, 2004, 602: 422–435

    Article  ADS  Google Scholar 

  49. Raymond J C, Ciaravella A, Dobrzycka D, et al. Farultraviolet spectra of fast coronal mass ejections associated with X-class flares. Astrophys J, 2003, 597: 1106–1117

    Article  ADS  Google Scholar 

  50. Forbes T G, Lin J. What can we learn about reconnection from coronal mass ejections? J Atmos Sol-Terr Phys, 2000, 62: 1499–1507

    Article  ADS  Google Scholar 

  51. Strauss H R. Turbulent reconnection. Astrophys J, 1988, 326: 412–417.

    Article  ADS  Google Scholar 

  52. Bemporad A. Spectroscopic detection of turbulence in post-CME current sheets. Astrophys J, 2008, 689: 572–584

    Article  ADS  Google Scholar 

  53. Ambrosiano J, Matthaeus W H, Goldstein M L, et al. Test particle acceleration in turbulent reconnecting magnetic fields. J Geophys Res, 1988, 93: 14383–14400

    Article  ADS  Google Scholar 

  54. Ko Y, Raymond J C, Lin J, et al. Dynamical and physical properties of a post-coronal mass ejection current sheet. Astrophys J, 2003, 594: 1068–1084

    Article  ADS  Google Scholar 

  55. Lin J, Ko Y-K, Sui L, et al. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys J, 2005, 622: 1251–1264

    Article  ADS  Google Scholar 

  56. Lin J, Li J, Forbes T G, et al. Features and properties of coronal mass ejection/flare current sheets. Astrophys J, 2007, 658: L123–L126

    Article  ADS  Google Scholar 

  57. Lin J, Li J, Ko Y-K, et al. Investigation of thickness and electrical resistivity of the current sheets in solar eruptions. Astrophys J, 2009, 693: 1666–1677

    Article  ADS  Google Scholar 

  58. Innes D E, Curdt W, Schwenn R, Solanki S, et al. Large doppler shifts in X-ray plasma: An explosive start to coronal mass ejection. Astrophys J, 2001, 549: L249–L252

    Article  ADS  Google Scholar 

  59. Kohl J L, Noci G, Cranmer SR, et al. Ultraviolet spectroscopy of the extended solar corona. Astron Astrophys Rev, 2006, 13: 31–157

    Article  ADS  Google Scholar 

  60. Sui L, Holman G D. Evidence for the formation of a largescale current sheet in a solar flare. Astrophys J, 2004, 596: L251–L254

    Article  ADS  Google Scholar 

  61. Aschwanden M J. Pulsed particle injection in a reconnectiondriven dynamic trap model in solar flares. Astrophys J, 2004, 608: 554–561

    Article  ADS  Google Scholar 

  62. Huang G, Lin J. Quasi-periodic reversals of radio polarization at 17 GHz observed in the 2002 April 21 solar event. Astrophys J, 2006, 639: L99–L102

    Article  ADS  Google Scholar 

  63. Fu Q, Ji H, Qin Z, et al. A new solar broadband radio spectrometer (SBRS) in China. Sol Phys, 2004, 222: 167–173

    Article  ADS  Google Scholar 

  64. Yan Y, Zhang J, Wang W, et al. The Chinese spectral radioheliograph-CSRG. Earth Moon Planets, 2009, 104: 97–100

    Article  ADS  Google Scholar 

  65. Wang S, Zhong X. Fiber fine structures superposed on the solar continuum emission Near 3 GHz. Sol Phys, 2006, 236: 155–166

    Article  ADS  Google Scholar 

  66. Chernov G P, Yan Y, Fu Q, et al. Unusual zebra patterns in the decimeter wave band. Sol Phys, 2008, 250: 115–131

    Article  ADS  Google Scholar 

  67. Wang S, Yan Y, Liu Y, et al. Solar radio spikes in 2.6–3.8 GHz during the 13 December 2006 event. Sol Phys, 2008, 253: 133–141

    Article  ADS  Google Scholar 

  68. Wu D, Huang J, Tang J, et al. Solar microwave drifting spikes and solitary kinetic Alfvén waves. Astrophys J, 2007, 665: L171–L174

    Article  ADS  Google Scholar 

  69. Ciaravella A, Raymond J C, Li J, et al. Elemental abundances and post-coronal mass ejection current sheet in a very hot active region. Astrophys J, 2002, 575: 1116–1128

    Article  ADS  Google Scholar 

  70. Ciaravella A, Raymond J C. The current sheet associated with the 2003 November 4 coronal mass ejection: Density, temperature, thickness, and line width. Astrophys J, 2008, 686: 1372–1382

    Article  ADS  Google Scholar 

  71. Lin J, Mancuso S, Vourlidas A. Theoretical investigation of the onset of type II radio bursts during solar eruptions. Astrophys J, 2006, 649: 1110–1123

    Article  ADS  Google Scholar 

  72. Mancuso S, Raymond J C, Kohl J L, et al. UVCS/SOHO observations of a CME-driven shock: Consequences on ion heating mechanisms behind a coronal shock. Astron Astrophys, 2002, 383: 267–274

    Article  ADS  Google Scholar 

  73. Klassen A, Pohjolainen S, Klein K-L. Type II radio precursor and X-ray flare emission. Sol Phys, 2003, 218: 197–210

    Article  ADS  Google Scholar 

  74. Yan Y, Pick M, Wang M, et al. A radio burst and its associated CME on March 17, 2002. Sol Phys, 2006, 239: 277–2

    Google Scholar 

  75. Bastian T S, Benz A O, Gary D E. Radio Emission from Solar Flares. Annu Rev Astron Astrophys, 1998, 36: 131–188

    Article  ADS  Google Scholar 

  76. Moreton G E, Ramsey H E. Recent observations of dynamical phenomena associated with solar flares. Publ Astron Soc Pac, 1960, 72(428): 357–358

    Article  ADS  Google Scholar 

  77. Wills-Davey M J, DeForest C E, Stenflo J O. Are “EIT waves” fast-mode MHD waves? Astrophys J, 2007, 664: 556–562

    Article  ADS  Google Scholar 

  78. Uchida Y. Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol Phys, 1960, 4: 30–44

    Article  ADS  Google Scholar 

  79. Narukage N, Morimoto T, Kadota M, et al. X-ray expanding features associated with a moreton wave. Pub Astron Soc Jpn, 2004, 56: L5–L8

    ADS  Google Scholar 

  80. Chen P, Wu S, Shibata K, et al. Evidence of EIT and Moreton waves in numerical simulations. Astrophys J, 2002, 572: L99–L102

    Article  ADS  Google Scholar 

  81. Chen P, Fang C, Shibata K. A full view of EIT waves. Astrophys J, 2005, 622: 1202–1210

    Article  ADS  Google Scholar 

  82. Chen P, Ding M, Fang C. Synthesis of CME-associated Moreton and EIT wave features from MHD simulations. Space Sci Rev, 2005, 121: 201–211

    Article  ADS  Google Scholar 

  83. Raymond J C, Thompson B J, St Cyr O C, et al. SOHO and radio observations of a CME shock wave. Geophys Res Lett, 2008, 27(10): 1439–1442

    Article  ADS  Google Scholar 

  84. Mancuso S, Avetta D. UV and radio observations of the coronal shock associated with the 2002 July 23 coronal mass ejection event. Astrophys J, 2008, 677: 683–691

    Article  ADS  Google Scholar 

  85. Noci G, Kohl J L, Withbroe G L. Solar wind diagnostics from Doppler-enhanced scattering. Astrophys J, 1987, 315: 706–715

    Article  ADS  Google Scholar 

  86. Ai G, Jin S, Wang S, et al. New Progress on space solar telescope. Adv Space Res, 2002, 29(12): 2051–2054

    Article  ADS  Google Scholar 

  87. Ai G, Zhang H, Zhang B. A proposal for space solar telescope. Solar Magnetic and Velocity Fields. In: Zhang H, ed. Beijing: Open Laboratory for the Association of optics and Astronomy, Chinese Academy of Sciences, 1993. 1–9

    Google Scholar 

  88. Cranmer S R, van Ballegooijen A A, Edgar R J. Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys J Suppl Ser, 2007, 171: 520–551

    Article  ADS  Google Scholar 

  89. Lin J, Cranmer S R, Farrugia C J. Plasmoids in reconnecting current sheets: Solar and terrestrial contexts compared. J Geophys Res, 2008, 113(A11): A11107

    Article  ADS  Google Scholar 

  90. Kohl J L, Esser R, Gardner L D. The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Sol Phys, 1995, 162: 313–356

    Article  ADS  Google Scholar 

  91. Kohl J L, Jain R, Cranmer S R, et al. Next generation UV coronagraph instrumentation for solar cycle-24. J Astrophys Astron, 2008, 29: 321–327

    Article  ADS  Google Scholar 

  92. Xuan J, Lin J. A two-dimensional multi-band spectroheliograph. Sol Phys, 1993, 144: 307–314

    Article  ADS  Google Scholar 

  93. Gu X, Lin J, Li K, et al. Kinematic characteristics of the surge on March 19, 1989. Astron Astrophys, 1994, 282: 240–251

    ADS  Google Scholar 

  94. Xuan J, Gu X, Lin J, et al. Time evolution and morphological characteristics of white light flare on 18 January 1989. Astron Astrophys Suppl, 1998, 129: 553–5

    Google Scholar 

  95. Li K, Schmieder B, Malherbe J-M, et al. Physical properties of the quiescent prominence of 5 June 1996, from Hα observations. Sol Phys, 1998, 183: 323–338

    Article  ADS  Google Scholar 

  96. Dun J, Gu X, Zhong S. A typical example of the application of the “Multi-Cloud Model” method to the asymmetric profiles processing. Astrophys Space Sci, 2000, 274: 473–479

    Article  ADS  Google Scholar 

  97. Gu X, Dun J, Zhong S. Two-dimensional multi-parameter fields of a limb flare loop system. Astron Astrophys, 2001, 380: 704–713

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lin.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2006CB806303), the National Natural Science Foundation of China (Grant Nos. 40636031 and 10873030), the CAS to YNAO (Grant No. KJCX2-YW-T04), and the NASA to the Harvard-Smithsonian CfA (Gant No. NNX07AL72G)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J. Studies of solar flares and CMEs related to the space solar missions in the future. Sci. China Ser. G-Phys. Mech. Astron. 52, 1646–1654 (2009). https://doi.org/10.1007/s11433-009-0242-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0242-7

Keywords

Navigation