Skip to main content
Log in

Experimental study of the electrical conductivity of hydrous minerals in the crust and the mantle under high pressure and high temperature

  • Review
  • Special Topic: Water in the Earth’s interior
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrous silicate minerals under controlled temperature, pressure and oxygen fugacity, have helped to constrain the water distribution in the Earth’s interior. This paper introduces high pressure and temperature experimental study of electrical conductivity measurement of hydrous minerals such as serpentine, talc, brucite, phase A, super hydrous phase B and phase D, and assesses the data quality of the above minerals. The dehydration effect and the pressure effect on the bulk conductivity of the hydrous minerals are specifically emphasized. The conduction mechanism of hydrous minerals and the electrical structure of the subduction zone are discussed based on the available conductivity data. Finally, the potential research fields of the electrical conductivity of hydrous minerals is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Capitani G C, Stixrude L. 2012. A first-principle investigation of antigorite up to 30 GPa: Structure behavior under compression. Am Mineral, 97: 1177–1186

    Article  Google Scholar 

  • Catti M, Ferraris G, Hull S, Pavese A. 1995. Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: A powder Neutron diffraction study. Phys Chem Miner, 22: 200–206

    Article  Google Scholar 

  • Freund F, Wengeler H. 1980. Proton conductivity of simple ionic hydroxides. Part I: The proton conductivities of Al(OH)3, Ca(OH)2 and Mg(OH)2. BerBunsenges Phys Chem, 84: 866–873

    Google Scholar 

  • Fuji-ta K, Katsura T, Matsuzaki T, Ichiki M. 2007. Electrical conductivity measurements of brucite under crustal pressure and temperature conditions. Earth Planets Space, 59: 645–648

    Article  Google Scholar 

  • Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Rev Geophys, 39: 291–323

    Article  Google Scholar 

  • Gasc J, Brunet R, Bagdassarov N, Morales-Flórez V. 2011. Electrical conductivity of polycrystalline Mg(OH)2 at 2 GPa: Effect of grain boundary hydration-dehydration. Phys Chem Miner, 38: 543–556

    Article  Google Scholar 

  • Green II H W, Chen W, Brudzinski M R. 2010. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature, 467: 828–831

    Article  Google Scholar 

  • Guo X, Yoshino T, Katayama I. 2011. Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa. Phys Earth Planet Inter, 188: 69–81

    Article  Google Scholar 

  • Guo X, Yoshino T, Okuchi T, Tomioka N. 2013. H-D interdiffusion in brucite at pressures up to 15 GPa. Am Mineral, 98: 1919–1929

    Article  Google Scholar 

  • Guo X, Yoshino T. 2013. Electrical conductivity of dense hydrous magnesium silicates with implication for conductivity in the stagnant slab. Earth Planet Sci Lett, 369–370: 239–247

    Article  Google Scholar 

  • Guo X, Yoshino T. 2014. Pressure-induced enhancement of proton conduction in brucite. Geophys Res Lett, 41: 813–819

    Article  Google Scholar 

  • Hinze E, Will G, Cemic L. 1981. Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure. Phys Earth Planet Inter, 25: 245–254

    Article  Google Scholar 

  • Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305, doi: 10.1029/ 2005JB004066

    Google Scholar 

  • Huang X, Xu Y, Karato S. 2005. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434: 746–749

    Article  Google Scholar 

  • Ichiki M, Uyeshima M, Utada H. 2001. Upper mantle conductivity structure of the back-arc region beneath northeastern China. Geophys Res Lett, 28: 3773–3776

    Article  Google Scholar 

  • Karato S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347: 273–274

    Article  Google Scholar 

  • Katayama I, Hirauchi K, Michibayashi K, Ando J. 2009. Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature, 461: 1114–1117

    Article  Google Scholar 

  • Katsura T, Sato K, Ito E. 1998. Electrical conductivity of silicate perovskite at lower-mantle conditions. Nature, 395: 493–495

    Article  Google Scholar 

  • Kawano S, Yoshino T, Katayama I. 2012. Electrical conductivity of magnetite- bearing serpentinite during shear deformation. Geophys Res Lett, 39: L20313, doi: 10.1029/2012GL05365

    Article  Google Scholar 

  • Kurtz R D, DeLaurier, J M, Gupta J C. 1986. A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate. Nature, 321: 596–599

    Article  Google Scholar 

  • Litasov K D, Ohtani E. 2002. Phase relations and melt compositions in CMAS-pyrolite-H2O systems up to 25 GPa. Phys Earth Planet Inter, 134: 105–127

    Article  Google Scholar 

  • Martens R, Freund F. 1976. The potential energy curve of the proton and dissociation energy of the OH-1 ion in Mg(OH)2. Phys Status Solid A-Appl Mat, 37: 97–104

    Article  Google Scholar 

  • Matsushita E. 2001. Tunneling mechanism on proton conduction in perovskite oxides. Solid State Ion, 145: 445–450

    Article  Google Scholar 

  • Meade C, Jeanloz R. 1991. Deep-focus earthquakes and recycling of water into the Earth’s mantle. Science, 252: 68–72

    Article  Google Scholar 

  • Mei S, Kohlstedt D L. 2000. Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J Geophys Res, 105: 21457–21469

    Article  Google Scholar 

  • Nagai T, Hattori T, Yamanaka T. 2000. Compression mechanism of brucite: An investigation by structural refinement under pressure. Am Mineral, 85: 760–764

    Article  Google Scholar 

  • Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y. 2014. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci, 7: 224–227

    Article  Google Scholar 

  • Nishihara Y, Shinmei T, Karato S. 2006. Grain-growth kinetics in wadsleyite: Effects of chemical environment. Phys Earth Planet Inter, 154: 30–43

    Article  Google Scholar 

  • Noguchi N, Shinoda K. 2010. Proton migration in portlandite inferred from activation energy of self-diffusion and potential energy curve of OH bond. Phys Chem Minerals, 37: 361–370

    Article  Google Scholar 

  • Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N. 2014. Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys Res Lett, 41, doi: 10.1002/2014GL061690

    Google Scholar 

  • Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter, 143–144: 255–269

    Article  Google Scholar 

  • Parise J, Leinenweber K, Weidner D, Tan K. 1994. Pressure-induced H bonding: Neutron diffraction study of brucite, Mg(OD)2 to 9.3 GPa. Am Mineral, 79: 193–196

    Google Scholar 

  • Pawley A R, Holloway J R. 1993. Water sources for subduction zone volcanism: New experimental constraints. Science, 260: 664–667

    Article  Google Scholar 

  • Peacock S M. 1990. Fluid processes in subduction zone. Science, 248: 329–337

    Article  Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Reynard B, Mibe K, Van de Moortele B. 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet SciLett, 307: 387–394

    Article  Google Scholar 

  • Schramke J A, Kerrick D M, Blencoe J G. 1982. Experimental determination of the brucite=periclase+water equilibrium with a new volumetric technique. Am Mineral, 67: 269–276

    Google Scholar 

  • Shinoda K, Yamakata M, Nanba T, Kimura H, Moriwaki T, Kondo Y, Kawamoto T, Niimi N, Miyoshi N, Aikawa N. 2002. High-pressure phase transition and behavior of protons in brucite Mg(OH)2: A high-pressure-temperature study using IR synchrotron radiation. Phys Chem Miner, 29: 396–402

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861

    Article  Google Scholar 

  • Wanamaker P E, Caldwell T G, Jiracek G R, Maris V, Hill G J, Ogawa Y, Bibby H M, Bennie S L, Heise W. 2009. Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature, 460: 733–737

    Article  Google Scholar 

  • Wang D, Karato S. 2013. Electrical conductivity of talc aggregates at 0.5 GPa: Influence of dehydration. Phys Chem Minerals, 40: 11–17

    Article  Google Scholar 

  • Winkler K W, Nur A. 1982. Seismic attenuation: Effects of pore fluids and frictional-sliding. Geophysics, 47: 1–15

    Article  Google Scholar 

  • Xu Y, Shankland T J, Duba A G. 2000. Pressure effect on electrical conductivity of mantle olivine. Phys Earth Planet Inter, 118: 149–161

    Article  Google Scholar 

  • Yang X. 2014. Electrical petrology: Principles, methods and advances (in Chinese). Sci Sin Terrae, 44: 1884–1990

    Google Scholar 

  • Yoshino T, Manthilake G, Matsuzaki T, Katsura T. 2008. Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451: 326–329

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T. 2006. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature, 443: 973–976

    Article  Google Scholar 

  • Yoshino T. 2010. Laboratory electrical conductivity measurements of mantle minerals. Surv Geophys, 31: 163–206

    Article  Google Scholar 

  • Zhao D, Tian Y, Lei J, Liu L, Zheng S. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Phys Earth Planet Inter, 173: 197–206

    Article  Google Scholar 

  • Zhu M, Xie H, Guo J, Bai W, Wu Z. 2001a. Impedance spectroscopy analysis on electrical properties of serpentine at high pressure and high temperature. Sci China Ser D-Earth Sci, 44: 336–345

    Article  Google Scholar 

  • Zhu M, Xie H, Guo J, Xu Z. 2001b. An experimental study on electrical conductivity of talc at high temperature and high pressure. Chin J Geophys, 44: 427–434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinZhuan Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X. Experimental study of the electrical conductivity of hydrous minerals in the crust and the mantle under high pressure and high temperature. Sci. China Earth Sci. 59, 696–706 (2016). https://doi.org/10.1007/s11430-015-5249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5249-5

Keywords

Navigation