1.

Tennekes H. Karl Popper and the accountability of numerical forecasting. ECMWF Workshop Proceedings. New Developments in Predictability. London: European Centre for Medium-Range Weather Forecasts, 1991

2.

Thompson P. Uncertainty of the initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 1957, 9: 275–295

3.

Palmer T N, Molteni F, Mureau R, et al. Ensemble prediction. ECMWF Res Department Tech Memo, 1992, 188: 45

4.

Toth Z, Kalnay E. Ensemble forecasting at NMC: The generation of perturbations. Bull Amer Meteor Soc, 1993, 74: 2317–2330

CrossRef5.

Mu M, Zhang Z Y. Conditional nonlinear optimal perturbations of a two-dimensional quasigeostrophic model. J Atmos Sci, 2006, 63: 1587–1604

CrossRef6.

Moore A M, Kleeman R. The dynamics of error growth and predictability in a coupled model of ENSO. Q J R Meteorol Soc, 1996, 122: 1405–1446

CrossRef7.

Samelson R G, Tziperman E. Instability of the chaotic ENSO: The growth-phase predictability barrier. J Atmos Sci, 2001, 58: 3613–3625

CrossRef8.

Duan W S, Mu M. Application of nonlinear optimization method to quantifying the predictability of a numerical model for El Nino-Southern Oscillation. Prog Nat Sci, 2005, 15(10): 915–921

9.

Mu M, Duan W S, Wang B. Season-dependent dynamics of nonlinear optimal error growth and El Nino-Southern Oscillation predictability in a theoretical model. J Geophys Res, 2007, 112: D10113, doi: 10.1029/2005JD006981

CrossRef10.

Mu M, Xu H, Duan W S. A kind of initial errors related to “spring predictability barrier” for El Nino events in Zebiak-Cane model. Geophys Res Lett, 2007, 34: L03709, doi: 0.1029/2006GL027412

CrossRef11.

Smith L A, Ziehmann C, Fraedrich K. Uncertainty dynamics and predictability in chaotic systems. Q J R Meteorol Soc, 1999, 125: 2855–2886

CrossRef12.

Lorenz E N. A study of the predictability of a 28-variable atmospheric model. Tellus, 1965, 17: 321–333

CrossRef13.

Xue Y, Cane M A, Zebaik S E. Predictability of a coupled model of ENSO using singular vector analysis. Part I: Optimal growth in seasonal background and ENSO cycles. Mon Weather Rev, 1997, 125: 2043–2056

CrossRef14.

Buizza R, Molteni F. The role of finite-time barotropic instability during the transition to blocking. J Atmos Sci, 1996, 53: 1675–1697

CrossRef15.

Frederisen J S. Adjoint sensitivity and finite time normal mode disturbances during blocking. J Atmos Sci, 1997, 47: 2409–2416

16.

Tziperman E, Ioannou P J. Transient growth and optimal excitation of thermohaline variability. J Phys Oceanogr, 2002, 32: 3427–3435

CrossRef17.

Mu M. Nonlinear singualr vectors and nonlinear singular values. Sci China Ser D-Earth Sci, 2000, 43(4): 375–385

CrossRef18.

Mu M, Duan W S, Wang B. Conditional nonlinear optimal perturbation and its applications. Non Proc Geophys, 2003, 10: 493–501

19.

Mu M, Wang J C. Nonlinear fastest growing perturbation and the first kind of predictability. Sci China Ser D-Earth Sci, 2001, 44(12): 1128–1139

CrossRef20.

Mu M, Duan W S. Conditional nonlinear optimal perturbation and its applications to the studies of weather and climate predictability. Chin Sci Bull, 2005, 50: 2401–2407

CrossRef21.

Mu M, Duan W S, Xu H, et al. Applications of conditional nonlinear optimal perturbation in predictability study and sensitivity analysis of weather and climate. Adv Atmos Sci, 2006, 23(6): 992–1002

CrossRef22.

Duan W S, Mu M, Wang B. Conditional nonlinear optimal perturbation as the optimal precursors for ENSO events. J Geophys Res, 2004, 109: D23105

CrossRef23.

Mu M, Sun L, Henk D A. The sensitivity and stability of the ocean’s thermocline circulation to finite amplitude freshwater perturbations. J Phys Oceanogr, 2004, 34: 2305–2315

CrossRef24.

Sun L, Mu M, Sun D J, et al. Passive mechanism decadal variation of thermohaline circulation. J Geophys Res, 2005, 110: C07025, doi: 10.1029/2005JC002897

CrossRef25.

Liu Y M. Maximum principle of conditional nonlinear optimal perturbation (in Chinese). J East Chin Norm Univ (Nat Sci), 2008, (2): 131–134

26.

Riviere O, Lapeyre G, Talagrand O. Nonlinear generalization of singular vectors: Behavior in a baroclinic unstable flow. J Atmos Sci, 2008, 65: 1896–1911

CrossRef27.

Terwisscha van Scheltinga A D. Data assimilation with implicit ocean models. PhD dissertation. Utrecht: Institute for Marine and Atmospheric Research, Utrecht University, 2007. 119

28.

Powell M J D. VMCWD: A Fortran subroutine for constrained optimization. Acm Sigmap Bull, 1983, 32: 4–16

CrossRef29.

Birgin E G, Martinez J M, Raydan M. Nonmonotone spectral projected gradient methods for convex sets. Siam J Opt, 2000, 10(4): 1196–1211

CrossRef30.

Jiang Z N, Mu M, Wang D H. Conditional nonlinear optimal perturbation of a T21L3 quasi-geostrophic model. Q J R Meteorol Soc, 2008, 134: 1027–1038

CrossRef31.

Rex D F. Blocking action in the middle troposphere and its effects upon regional climate. I: An aerological study of blocking action. Tellus, 1950, 2: 196–211

CrossRef32.

Molteni F, Palmer T N. Predictability and finite-time instability of the northern winter circulation. Quart J Roy Meteor Soc, 1993, 119: 269–298

CrossRef33.

Buizza R, Molteni F. The role of finite-time barotropic instability during the transition to blocking. J Atmos Sci, 1996, 53: 1675–1697

CrossRef34.

Frederiksen J S. Singular vector, finite-time normal modes, and error growth during blocking. J Atmos Sci, 2000, 57: 312–333

CrossRef35.

Mu M, Jiang Z N. A method to find out the perturbations triggering the blocking onset: Conditional nonlinear optimal perturbations. J Atmos Sci, 2008, 65: 3935–3946

CrossRef36.

Jin F F, An S I, Timmermann A, et al. Strong El Nino events and nonlinear dynamical heating. Geophys Res Lett, 2003, 30: 1120, doi: 10.1029/2002GL016356

CrossRef37.

An S I, Jin F F. Nonlinearity and asymmetry of ENSO. J Clim, 2004, 17: 2399–2412

CrossRef38.

Wang B, An S I. Why the properties of El Nino changed during the late 1970s. Geophys Res Lett, 2001, 28: 3709–3712

CrossRef39.

Duan W S, Mu M. Investigating decadal variability of El Nino-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J Geophys Res, 2006, 111: C07015, doi: 10.1029/2005JC003458

CrossRef40.

Philander S G H. El Nino Southern Oscillation phenomena. Nature, 1983, 302: 295

CrossRef41.

Jin F F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 1997, 54: 811–829

CrossRef42.

Rodgers K B, Friederichs P, Latif M. Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim, 2004, 17: 3761–3774

CrossRef43.

Duan W S, Xu H, Mu M. Decisive role of nonlinear temperature advection in El Nino and La Nina amplitude asymmetry. J Geophys Res, 2008, 113: C01014, doi: 10.1029/2006JC003974

CrossRef44.

Wang B, Fang Z. Chaotic oscillation of tropical climate: A dynamic system theory for ENSO. J Atmos Sci, 1996, 53: 2786–2802

CrossRef45.

Zebiak S E, Cane A. A model El Nino-Southern Oscillation. Mon Weather Rev, 1987, 115: 2262–2278

CrossRef46.

Webster P J, Yang S. Monsoon and ENSO: Selectively interactive systems, Q J R Meteorol Soc, 1992, 118: 877–926

CrossRef47.

Wang C, Picaut J. Understanding ENSO physics-A review. In: Wang C Z, Xie S P, Carton J A, eds. Earth’s Climate: The Ocean-Atmosphere Interaction. Geophys Monogr, 2004, 147: 21–48

48.

Chen D, Cane M A, Kaplan A, et al. Predictability of El Nino over the past 148 years. Nature, 2004, 428: 733–736

CrossRef49.

Charney J G. The dynamics of long waves in a baroclinic westerly current. J Meteor, 1947, 4: 135–162

50.

Eady E T. Long waves and cyclone waves. Tellus, 1949, 1: 33–52

51.

Farrell B F. The initial growth of disturbances in baroclinic flows. J Atmos Sci, 1982, 39: 1663–1686

CrossRef52.

Lacarra J F, Talagrand O. Short-range evolution of small perturbations in a barotropic model. Tellus, 1988, 40: 81–95

53.

Badger J, Hoskins B J. Simple initial value problems and mechanisms for baroclinic growth. J Atmos Sci, 2001, 58: 38–49

CrossRef54.

Jiang S, Jin F F, Ghil M. Multiple equilibria and aperiodic solutions in a wind-driven doublegyre, shallow-water model. J Phys Oceanogr, 1995, 25: 764–786

CrossRef55.

Dijkstra H A. Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Nino. 2nd ed. Dordrecht: Springer, 2005

56.

Dijkstra H A, De Ruijter W P M. Finite amplitude stability of the wind-driven ocean circulation. Geophys Astrophys Fluid Dyn, 1996, 83: 1–31

CrossRef57.

Wu X G, Mu M. Impact of horizontal diffusion on the nonlinear stability of thermohaline circulation in a modified box model. J Phys Ocenogr, 2009, 39: 798–805

CrossRef58.

Mu M, Wang B. Nonlinear instability and sensitivity of a theoretical grassland ecosystem to finite-amplitude perturbations. Nonlinear Process Geophys, 2007, 14: 409–423

59.

Zeng Q C, Lu P S, Zeng X D. Maximum simplified dynamic model of grass field ecosystem with two variables. Sci China Ser B, 1994, 37: 94–103

60.

Zeng X D, Shen S H, Zeng X B, et al. Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation. Geophys Res Lett, 2004, 31: 5501, doi:10.1029/2003GL018910

CrossRef61.

Zeng Q C, Zeng X D. An analytical dynamic model of grass field ecosystem with two variables. Ecol Model, 1996, 85: 187–196

CrossRef62.

Chao J P, Zhang G K, Yuan X M. A preliminary investigation for the formation of pressure jump produced by the mountain in a two model (in Chinese). Acta Meteorol Sin, 1964, 34: 233–241

63.

Chao J P. A preliminary analysis of the interaction between convection development and ambient environment (in Chinese). Acta Meteorol Sin, 1962, 32: 11–18

64.

Houtekamer P L, Derome J. Methods for ensemble prediction. Mon Weather Rev, 1995, 123: 2181–2196

CrossRef65.

Hamill T M, Snyder C, Morss R E. A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles. Mon Weather Rev, 2000, 128: 1835–1851

CrossRef66.

Palmer T N, Gelaro R, Barkmeuer J, et al. Singular vectors, metrics, and adaptive observations. J Atmos Sci, 1998, 55: 633–653

CrossRef67.

Mu M, Jiang Z N. A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation. Chin Sci Bull, 2008, 53(13): 2062–2068

CrossRef68.

Mu M, Wang H, Zhou F F. A preliminary application of conditional nonlinear optimal perturbation to adaptive observation (in Chinese). Chin J Atmos Sci, 2007, 31(6): 1102–1112