Skip to main content
Log in

Review of the applications of Multiangle Imaging SpectroRadiometer to air quality research

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

The Multiangle Imaging SpectroRadiometer (MISR) launched by NASA in late 1999 has a unique multiangle design, which points nine cameras at fixed angles along the satellite flight track and collects reflected solar radiation simultaneously. This design allows the retrieval of a rich dataset of particle abundance, shape and composition over both land and ocean. Some of its capabilities have not been seen by any currently operating satellite aerosol sensors. Since MISR is sensitive to fine particles, it provides a new data source to study the spatial and temporal characteristics of air quality over large geographical regions. We first briefly introduce the MISR instrument, the retrieval and structure of MISR aerosol data, and then review the applications of MISR aerosol data in various aspects of air quality research since its launch. These include the spatial distributions of particle pollution events such as dust storms, wild fires, and urban pollution. Because of the high quality of MISR aerosol data, they can be used as quantitative indicators of particle pollution levels. We review the current modeling studies of surface level particle concentrations. Next, we introduce research results using MISR’s advanced data such as the plume heights, and particle microphysical properties. In the discussion, we compare MISR research with current MODIS research to the best of our ability as MODIS data have been more extensively explored by the Chinese scientific community. Finally, we summarize the advantages and disadvantages of MISR data related to its applications to the air quality research. Given the highly quantitative measurements and comprehensive aerosol information MISR can provide, we believe that it will provide great values to advance our understanding of the particle air pollution in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samet J M, Dominici F, Curriero F C, et al. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med, 2000, 343(24): 1742–1749

    Article  Google Scholar 

  2. Vedal S, Petkau J, White R, et al. Acute effects of ambient inhalable particles in asthmatic and nonasthmatic children. Am J Respir Crit Care Med, 1998, 157(4): 1034–1043

    Google Scholar 

  3. Pope C A, Dockery D W. Health effects of fine particulate air pollution: Lines that connect. J Air Waste Manage Assoc, 2006, 56(6): 709–742

    Google Scholar 

  4. Smith K R, Jantunen M. Why particles? Chemosphere, 2002, 49(9): 867–871

    Article  Google Scholar 

  5. He K B, Yang F M, Ma Y L, et al. The characteristics of PM2.5 in Beijing. China. Atmos Environ, 2001, 35(29): 4959–4970

    Article  Google Scholar 

  6. Ye B, Jia X, Yang H, et al. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmos Environ, 2003, 37(4): 499–510

    Article  Google Scholar 

  7. Kaufman Y J, Herring D, Ranson K, et al. Earth observing system AM 1 mission to Earth. IEEE Trans Geosci Remote Sensing, 1998, 36(4): 1045–1055

    Article  Google Scholar 

  8. Remer L A, Kaufman Y J, Tanre D, et al. The MODIS aerosol algorithm, products, and validation. J Atmos Sci, 2005, 62(4): 947–973

    Article  Google Scholar 

  9. Diner D, Beckert J, Reilly T H, et al. Multi-angle Imaging Spectro-Radiometer (MISR) instrument description and experiment overview. IEEE Trans Geosci Remote Sensing, 1998, 36(4): 1072–1087

    Article  Google Scholar 

  10. Martonchik J V, Diner D J, Kahn R A, et al. Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans Geosci Remote Sensing, 1998, 36(4): 1212–1227

    Article  Google Scholar 

  11. Diner D J, Braswell B H, Davies R, et al. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens Environ, 2005, 97(4): 495–518

    Article  Google Scholar 

  12. Feng X, Zhao S, Chen Y. Inversion of MISR Broadband albedo and its relationship with atmospheric conditions (in Chinese). Remote Sens Land Resour, 2003, 58(4): 22–25

    Google Scholar 

  13. Han B, Kang L, Chen Y, et al. An optimized fusion predictor for MISR remote sensing data (in Chinese). J Wuhan Univ Technol, 2006, 28(7): 97–100

    Google Scholar 

  14. Han B, Kang L, Chen Y, et al. A fusion prediction model for spatial target based on remote sensing data (in Chinese). Comput Eng, 2006, 32(14): 35–39

    Google Scholar 

  15. Kahn R, Banerjee P, McDonald D. Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. J Geophys Res, 2001, 106(D16): 18219–18238

    Article  Google Scholar 

  16. Kahn R, Banerjee P, McDonald D, et al. Sensitivity of multiangle imaging to aerosol optical depth and to pure-particle size distribution and composition over ocean. J Geophys Res, 1998, 103(D24): 32195–32213

    Article  Google Scholar 

  17. Kalashnikova O V, Kahn R. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: 2. Sensitivity over dark water. J Geophys Res, 2006, 111(D11): Art. No. D11207

  18. Kalashnikova O V, Kahn R, Sokolik I N, et al. Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: Optical models and retrievals of optically thick plumes. J Geophys Res, 2005, 110(D18): D18S14

    Article  Google Scholar 

  19. Holben B, Eck T F, Slutsker I, et al. AERONET: A federated instrument network and data archive for aerosol characterization. Remote Sens Environ, 1998, 66(1): 1–16

    Article  Google Scholar 

  20. Smirnov A. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens Environ, 2000, 73(3): 337–349

    Article  Google Scholar 

  21. Russell P B, Livingston J M, Redemann J, et al. Multi-grid-cell validation of satellite aerosol property retrievals in INTEX/ITCT/ICARTT 2004. J Geophys Res, 2007, 112(D12): D12S09

    Article  Google Scholar 

  22. Schmid B, Redemann J, Russell P, et al. Coordinated airborne, spaceborne, and ground-based measurements of massive thick aerosol layers during the dry season in southern Africa. J Geophys Res, 2003, 108(D13): 8496

    Article  Google Scholar 

  23. Liu Y, Sarnat J A, Coull B A, et al. Validation of multiangle imaging spectroradiometer (MISR) aerosol optical thickness measurements using aerosol robotic network (AERONET) observations over the contiguous United States. J Geophys Res, 2004, 109(D6): D06205

    Article  Google Scholar 

  24. Kahn R A, Gaitley B J, Martonchik J V, et al. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J Geophys Res, 2005, 110(D10): D10S04

    Article  Google Scholar 

  25. Abdou W A, Diner D J, Martonchik J V, et al. Comparison of coincident Multiangle Imaging SpectroRadiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites. J Geophys Res, 2005, 110(D10): D10S07

    Article  Google Scholar 

  26. Prasad A, Singh R. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens Environ, 2007, 107(1–2): 109–119

    Article  Google Scholar 

  27. Li C C, Mao J T, Lau K-H A, et al. Characteristics of distribution and seasonal variation of aerosol optical depth in eastern China with MODIS products. Chin Sci Bull, 2003, 48(22): 2488–2495

    Google Scholar 

  28. Martonchik J, Diner D, Kahn R, et al. Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys Res Lett, 2004, 31(16): L16102

    Article  Google Scholar 

  29. Christopher S A, Wang J. Intercomparison between Multi-angle Imaging SpectRoradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China: Implications for satellite aerosol retrievals and radiative forcing calculations. Tellus Ser B-Chem Phys Meteorol, 2004, 56(5): 451–456

    Article  Google Scholar 

  30. Jiang X, Liu Y, Yu B, et al. Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area. Remote Sens Environ, 2007, 107(1–2): 45–53

    Article  Google Scholar 

  31. Solomon F, Giorgi F, Liousse C. Aerosol modelling for regional climate studies: Application to anthropogenic particles and evaluation over a European/African domain. Tellus Ser B-Chem Phys Meteorol, 2006, 58(1): 51–72

    Article  Google Scholar 

  32. Liu L, Lacis A A, Carlson B E, et al. Assessing Goddard Institute for Space Studies ModelE aerosol climatology using satellite and ground-based measurements: A comparison study. J Geophys Res, 2006, 111(D20): D20212

    Article  Google Scholar 

  33. Li C C, Mao J T, Liu Q. Characteristics of aerosol optical depth distributions over Sichuan Basin derived from MODIS data. J Appl Meteorol, 2003, 14(1): 1–7

    Google Scholar 

  34. Liu G, Mao J T, Li C C. Optical depth study on atmospheric aerosol in Yangtze River Delta region, Shanghai (in Chinese). Environ Sci, 2003, 22(Suppl.): 58–63

    Google Scholar 

  35. Li C C, Liu Q, Mao J T, et al. An aerosol pollution episode in Hongkong with remote sensing products of MODIS and Lidar. J Appl Meteorol, 2004, 15(6): 641–651

    Google Scholar 

  36. Martonchik J, Diner D J, Crean K A, et al. Regional aerosol retrieval results from MISR. IEEE Trans Geosci Remote Sensing, 2002, 40(7): 1520–1531

    Article  Google Scholar 

  37. Kahn R A, Li W H, Moroney C, et al. Aerosol source plume physical characteristics from space-based multiangle imaging. J Geophys Res, 2007, 112(D11): D11205

    Article  Google Scholar 

  38. Frank T D, Di Girolamo L, Geegan S. The spatial and temporal variability of aerosol optical depths in the Mojave Desert of southern California. Remote Sens Environ, 2007, 107(1–2): 54–64

    Article  Google Scholar 

  39. Prasad A K, Singh R P, Kafatos M. Influence of coal based thermal power plants on aerosol optical properties in the Indo-Gangetic basin. Geophys Res Lett, 2006, 33(5): L05805

    Article  Google Scholar 

  40. Di Girolamo L, Bond T C, Bramer D, et al. Analysis of Multi-angle Imaging SpectroRadiometer (MISR) aerosol optical depths over greater India during winter 2001–2004. Geophys Res Lett, 2004, 31(23): L23115

    Article  Google Scholar 

  41. Jordan C E, Dibb J E, Anderson B E, et al. Uptake of nitrate and sulfate on dust aerosols during TRACE-P. J Geophys Res, 2003, 108(D21): 1–10

    Google Scholar 

  42. Xia L, Wang D, Wang F. Researches on the advanced warning system and advanced warning grade of the photochemical smog pollution in Guangzhou city based on MODIS data (in Chinese). Remote Sens Land Resour, 2006, 70(4): 73–76

    Google Scholar 

  43. Wang H, Zha Y. Urban air quality by MODIS AOT products (in Chinese). Urban Environ Urban Ecol, 2006, 19(3): 21–24

    Google Scholar 

  44. Han J, Wang S, Qi B, et al. Distribution of aerosol optical thickness and its relation with dusty weather in China (in Chinese). J Desert Res, 2006, 26(3): 362–369

    Google Scholar 

  45. Li C C, Mao J T, Liu Q, et al. Research on the air pollution in Beijing and its surroundings with MODIS AOD products (in Chinese). Chin J Atmos Sci, 2003, 27(5): 869–882

    Google Scholar 

  46. Sun J, Su J, Lu X, et al. Application of aerosol optical depth data from MODIS to retrieve visibility. Environ Sci Manag, 2006, 31(5): 97–101

    Google Scholar 

  47. Chow J, Watson J, Lowenthal D, et al. Comparability between PM2.5 and particle light scattering measurements. Environ Monit Assess, 2002, 79(1): 29–45

    Article  Google Scholar 

  48. Li C C, Lau K-H A, Mao J T, et al. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans Geosci Remote Sensing, 2005, 43(11): 2650–2658

    Article  Google Scholar 

  49. Liu Y, Sarnat J A, Kilaru A, et al. Estimating ground-level PM2.5 in the eastern united states using satellite remote sensing. Environ Sci Technol, 2005, 39(9): 3269–3278

    Article  Google Scholar 

  50. Liu Y, Franklin M, Kahn R, et al. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sens Environ, 2007, 107(1–2): 33–44

    Article  Google Scholar 

  51. Vermote E F, Roger J C, Sinyuk A, et al. Fusion of MODIS-MISR aerosol inversion for estimation of aerosol absorption. Remote Sens Environ, 2007, 107(1–2): 81–89

    Article  Google Scholar 

  52. Liu Y, Park R J, Jacob D J, et al. Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. J Geophys Res, 2004, 109(D22): D22206

    Article  Google Scholar 

  53. Bey I, Jacob D J, Yantosca R M, et al. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J Geophys Res, 2001, 106(D19): 23073–23095

    Article  Google Scholar 

  54. Park R J, Jacob D J, Field B D, et al. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J Geophys Res, 2004, 109(D15): D15204

    Article  Google Scholar 

  55. Ginoux P, Chin M, Tegen I, et al. Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res, 2001, 106(D17): 20255–20273

    Article  Google Scholar 

  56. Van Donkelaar A, Martin R V, Park R J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J Geophys Res, 2006, 111(D21): D21201

    Article  Google Scholar 

  57. Muller J P, Mandanayake A, Moroney C, et al. MISR stereoscopic image matchers: Techniques and results. IEEE Trans Geosci Remote Sensing, 2002, 40(7): 1547–1559

    Article  Google Scholar 

  58. Stenchikov G, Lahoti N, Diner D J, et al. Multiscale plume transport from the collapse of the World Trade Center on September 11, 2001. Environ Fluid Mech, 2006, 6(5): 425–450

    Article  Google Scholar 

  59. Mazzoni D, Logan J, Diner D, et al. A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sens Environ, 2007, 107(1–2): 138–148

    Article  Google Scholar 

  60. Liu Y, Kahn R, Koutrakis P. Estimating PM2.5 component concentrations and size distributions using satellite retrieved fractional aerosol optical depth: Part I—Method development. J Air Waste Manage Assoc, 2007, 57(11): 1351–1359

    Google Scholar 

  61. Liu Y, Kahn R, Turquety S, et al. Estimating PM2.5 component concentrations and size distributions using satellite retrieved fractional aerosol optical depth: Part II—A case study. J Air Waste Manage Assoc, 2007, 57(11): 1360–1369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeBin He.

Additional information

Supported by Harvard-EPA Center on Particle Health Effects (Grant Nos. R-827353 and R-832416), NASA’s Climate and Radiation Research and Analysis Program, the EOS-MISR Instrument Project and the National High Technology Research and Development Program of China (Grant No. 2006AA06A305).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Chen, D., Kahn, R.A. et al. Review of the applications of Multiangle Imaging SpectroRadiometer to air quality research. Sci. China Ser. D-Earth Sci. 52, 132–144 (2009). https://doi.org/10.1007/s11430-008-0149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-008-0149-6

Keywords

Navigation