Skip to main content
Log in

Nonlinear instability for nonhomogeneous incompressible viscous fluids

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We investigate the nonlinear instability of a smooth steady density profile solution to the three-dimensional nonhomogeneous incompressible Navier-Stokes equations in the presence of a uniform gravitational field, including a Rayleigh-Taylor steady-state solution with heavier density with increasing height (referred to the Rayleigh-Taylor instability). We first analyze the equations obtained from linearization around the steady density profile solution. Then we construct solutions to the linearized problem that grow in time in the Sobolev space H k, thus leading to a global instability result for the linearized problem. With the help of the constructed unstable solutions and an existence theorem of classical solutions to the original nonlinear equations, we can then demonstrate the instability of the nonlinear problem in some sense. Our analysis shows that the third component of the velocity already induces the instability, which is different from the previous known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. The International Series of Monographs on Physics. Oxford: Clarendon Press, 1961

    Google Scholar 

  2. Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids. Comm Partial Differential Equations, 2003, 28: 1183–1201

    Article  MathSciNet  MATH  Google Scholar 

  3. Cho Y, Kim H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math, 2006, 120: 91–129

    Article  MathSciNet  MATH  Google Scholar 

  4. Dautray R, Lions J L. Analyse Mathématique et Calcul Mumérique pour les Sciences et les Techniques. Paris: Masson, 1985

    Google Scholar 

  5. Ding S, Wen H. Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Anal Real World Appl, 2011, 12: 1510–1531

    Article  MathSciNet  MATH  Google Scholar 

  6. Duan R, Jiang F, Jiang S. On the Rayleigh-Taylor instability for incompressible magnetohydrodynamic flows. SIAM J Appl Math, 2011, 71: 1990–2013

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan R, Jiang F, Jiang S. Rayleigh-Taylor instability for compressible rotating flows. ArXiv:1204.6451v1

  8. Erban D. The equations of motion of a perfect fluid with free boundary are not well posed. Comm Partial Differential Equations, 1987, 12: 1175–1201

    Article  MathSciNet  Google Scholar 

  9. Galdi G. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Linearized Steady Problems. Springer Tracts in Natural Philosophy 38, vol. 1. New York: Springer-Verlag, 1994

    Google Scholar 

  10. Guo Y, Tice I. Compressible, inviscid Rayleigh-Taylor instability. Indiana Univ Math J, 2011, 60: 677–712

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo Y, Tice I. Linear Rayleigh-Taylor instability for viscous, compressible fluids. SIAM J Math Anal, 2011, 42: 1688–1720

    Article  MathSciNet  Google Scholar 

  12. Haspot B. Existence of strong solutions in critical spaces for barotropic viscous fluids in larger spaces. Sci China Math, 2012, 55: 309–336

    Article  MathSciNet  MATH  Google Scholar 

  13. He C, Wang L Z. Weighted L p-estimates for Stokes flow in R n+ with applications to the non-stationary Navier-Stokes flow. Sci China Math, 2011, 54: 573–586

    Article  MathSciNet  MATH  Google Scholar 

  14. He C, Wang Y. Limiting case for the regularity criterion of the Navier-Stokes equations and the magnetohydrodynamic equations. Sci China Math, 2010, 53: 1767–1774

    Article  MathSciNet  MATH  Google Scholar 

  15. Hwang H J. Variational approach to nonlinear gravity-driven instability in a MHD setting. Quart Appl Math, 2008, 66: 303–324

    MathSciNet  MATH  Google Scholar 

  16. Hwang H J, Guo Y. On the dynamical Rayleigh-Taylor instability. Arch Ration Mech Anal, 2003, 167: 235–253

    Article  MathSciNet  MATH  Google Scholar 

  17. Jang J, Tice I. Instability theory of the Navier-Stokes-Poisson equations. ArXiv:1105.5128v2

  18. Jiang F, Jiang S, Wang W. On the Rayleigh-Taylor instability for two uniform viscous incompressible flows. http://www.math.ntnu.no/conservation/2011/015.pdf

  19. Jiang F, Jiang S, Wang Y. On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations. ArXiv:1204.6402v2

  20. Jiang S, Ju Q C, Li H L, et al. Quasi-neutral limit of the full bipolar Euler-Poisson system. Sci China Math, 2010, 53: 3099–3114

    Article  MathSciNet  MATH  Google Scholar 

  21. Kong D X, Liu K F, Wang Y Z. Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases. Sci China Math, 2010, 53: 719–738

    Article  MathSciNet  MATH  Google Scholar 

  22. Kruskal M, Schwarzschild M. Some instabilities of a completely ionized plasma. Proc Roy Soc London A, 1954, 233: 348–360

    MathSciNet  Google Scholar 

  23. Novotnỳ A, Straškraba I. Introduction to the Mathematical Theory of Compressible Flow. Oxford: Oxford Univ Press, 2004

    Google Scholar 

  24. Li H L, Zhang T. Large time behavior of solutions to 3D compressible Navier-Stokes-Poisson system. Sci China Math, 2012, 55: 159–177

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions P L. Mathematical Topics in Fluid Mechanics: Incompressible models. USA: Oxford Univ Press, 1996

    MATH  Google Scholar 

  26. Prüess J, Simonett G. On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations. Indiana Univ Math J, 2010, 59: 1853–1871

    Article  Google Scholar 

  27. Rayleigh L. Analytic solutions of the Rayleigh equations for linear density profiles. Proc London Math Soc, 1883, 14: 170–177

    Article  MathSciNet  MATH  Google Scholar 

  28. Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc London Math Soc, 1882, 14: 170–177

    Article  MathSciNet  Google Scholar 

  29. Taylor G I. The instability of liquid surface when accelerated in a direction perpendicular to their planes. Proc Roy Soc London A, 1950, 201: 192–196

    Article  MATH  Google Scholar 

  30. Tong L, Yuan H. Classical solutions to Navier-Stokes equations for nonhomogeneous incompressible fluids with nonnegative densities. J Math Anal Appl, 2010, 362: 476–504

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang J. Two-Dimensional Nonsteady Flows and Shock Waves (in Chinese). Beijing: Science Press, 1994

    Google Scholar 

  32. Wang Y. Critical magnetic number in the MHD Rayleigh-Taylor instability. J Math Phys, 2012, 53: 073701

    Article  MathSciNet  Google Scholar 

  33. Vaigant V A, Kazhikhov A V. On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid. Siberian Math J, 1995, 36: 1108–1141

    Article  MathSciNet  Google Scholar 

  34. Zhang P. Global smooth solutions to the 2D nonhomogeneous Navier-Stokes equations. Inter Math Research Notices, 2008, doi: 10.1093/imrn/rnn098

  35. Zhang P, Zhang T. Regularity of the Koch-Tataru solutions to Navier-Stokes system. Sci China Math, 2012, 55: 453–464

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao W J, Du D P. Local well-posedness of lower regularity solutions for the incompressible viscoelastic fluid system. Sci China Math, 2010, 53: 1521–1530

    Article  MathSciNet  MATH  Google Scholar 

  37. Zheng T T, Zhao J N. On the stability of contact discontinuity for Cauchy problem of compress Navier-Stokes equations with general initial data. Sci China Math, 2012, 55: 2005–2026

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, F., Jiang, S. & Ni, G. Nonlinear instability for nonhomogeneous incompressible viscous fluids. Sci. China Math. 56, 665–686 (2013). https://doi.org/10.1007/s11425-013-4587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4587-z

Keywords

MSC(2010)

Navigation