Skip to main content
Log in

A new proof for the correctness of the F5 algorithm

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In 2002, Faugère presented the famous F5 algorithm for computing Gröbner basis where two criteria, syzygy criterion and rewritten criterion, were proposed to avoid redundant computations. He proved the correctness of the syzygy criterion, but the proof for the correctness of the rewritten criterion was left. Since then, F5 has been studied extensively. Some proofs for the correctness of F5 were proposed, but these proofs are valid only under some extra assumptions. In this paper, we give a proof for the correctness of F5B, an equivalent version of F5 in Buchberger’s style. The proof is valid for both homogeneous and non-homogeneous polynomial systems. Since this proof does not depend on the computing order of the S-pairs, any strategy of selecting S-pairs could be used in F5B or F5. Furthermore, we propose a natural and non-incremental variant of F5 where two revised criteria can be used to remove almost all redundant S-pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardet M, Faugère J-C, Salvy B. Complexity of Gröbner basis computation for semi-regular overdetermined sequences over \(\mathbb{F}_2 \) with solutions in \(\mathbb{F}_2 \). Inria Research Report, n 5049, 2003

  2. Becker T, Weispfenning V, Kredel H. Gröbner Bases. New York: Springer-Verlag, 1993.

    Book  MATH  Google Scholar 

  3. Buchberger B. Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensionalen polynomideal. PhD Thesis, Innsbruck, 1965

  4. Buchberger B. A criterion for detecting unnecessary reductions in the construction of Gröbner basis. In: Proc EUROCAL’ 79, Lecture Notes in Comp Science, vol. 72. New York: Springer-Verlag, 1979, 3–21

    Google Scholar 

  5. Eder C. On the criteria of the F5 algorithm. ArXiv:0804.2033, 2008

  6. Eder C, Perry J. F5C: a variant of Faugère’s F5 algorithm with reduced Gröbner bases. ArXiv:0906.2967, 2009

  7. Eder C, Perry J. Signature-based algorithms to compute Gröbner bases. In: Proc ISSAC’11. New York: ACM Press, 2011, 99–106

    Google Scholar 

  8. Faugère J-C. A new efficient algorithm for computing gröbner bases (F4). J Pure Appl Algebra, 1999, 139: 61–88

    Article  MathSciNet  MATH  Google Scholar 

  9. Faugère J-C. A new efficient algorithm for computing Grönber bases without reduction to zero (F5). In: Porc ISSAC’ 2002. New York: ACM Press, 2002, 75–83

    Google Scholar 

  10. Faugère J-C, Ars G. An algebraic cryptanalysis of nonlinear filter generators using Gröbner bases. Inria Research Report, n 4739, 2003

  11. Gao S H, Guan Y H, Volny F. A new incremental algorithm for computing Gröbner bases. In: Proc ISSAC’10. New York: ACM Press, 2010, 13–19

    Google Scholar 

  12. Gao S H, Volny F, Wang M S. A new algorithm for computing Gröbner bases. Cryptology ePrint Archive: Report 2010/641, 2010

  13. Gebauer R, Moller H M. Buchberger’s algorithm and staggered linear bases. In: Proc ISSAC’86. Ontario: Waterloo, 1986, 218–221

  14. Giovini A, Mora T, Niesi G, et al. One sugar cube, please, or selection strategies in the Buchberger algorithm. In: Proc ISSAC’91. Bonn: ACM Press, 1991, 49–54

    Google Scholar 

  15. Hashemi A, Ars G. Extended F5 criteria. J Symb Comput, 2010, 45: 1330–1340

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang L. A new conception for computing Gröbner basis and its applications. ArXiv:1012.5425, 2010

  17. Lazard D. Gaussian elimination and resolution of systems of algebraic equations. In: Proc EUROCAL’83, Lecture Notes in Computer Science, vol. 162. New York: Springer-Verlag, 1983, 146–157

    Google Scholar 

  18. Mora T, Möller H M, Traverso C. Gröbner bases computation using syzygies. In: Proc ISSAC’92. New York: ACM Press, 1992, 320–328

    Google Scholar 

  19. Sun Y, Wang D K. Branch Gröbner bases algorithm over Boolean ring (in Chinese). J Syst Sci Math Sci, 2009, 29: 1266–1277

    MATH  Google Scholar 

  20. Sun Y, Wang D K. The implementation and complexity analysis of the branch Gröbner bases algorithm over Boolean ring. In: Proc ASCM’09, 2009, 191–200

  21. Sun Y, Wang D K. The F5 algorithm in Buchberger’s style. J Syst Sci Complex, 2011, 24: 1218–1231

    Article  MathSciNet  Google Scholar 

  22. Sun Y, Wang D K. A generalized criterion for signature related Gröbner basis algorithms. In: Proc ISSAC’11. New York: ACM Press, 2011, 337–344

    Google Scholar 

  23. Sun Y, Wang D K. Solving detachability problem for the polynomial ring by signature-based Gröbner basis algorithms. Preprint, 2011

  24. Sun Y, Wang D K, Ma X D, et al. A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras. In: Proc ISSAC’12. New York: ACM Press, 2012, 351–358

    Google Scholar 

  25. Stegers T. Faugère’s F5 algorithm revisited. Thesis for the degree of Diplom-Mathematiker, 2005

  26. Zobnin A. Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals. Program Comput Softw, 2010, 36: 75–82

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DingKang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wang, D. A new proof for the correctness of the F5 algorithm. Sci. China Math. 56, 745–756 (2013). https://doi.org/10.1007/s11425-012-4480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4480-1

Keywords

MSC(2010)

Navigation