Science China Mathematics

, Volume 53, Issue 4, pp 953–965

Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space

Authors

    • Faculty of Mathematics and Computer SciencesHubei University
    • School of Mathematical SciencesPeking University
  • TongZhu Li
    • Faculty of SciencesBeijing Institute of Technology
  • YiJun He
    • School of Mathematical SciencesShanxi University
  • ChuanXi Wu
    • Institute of MathematicsHubei University
Articles

DOI: 10.1007/s11425-009-0206-4

Cite this article as:
Nie, C., Li, T., He, Y. et al. Sci. China Math. (2010) 53: 953. doi:10.1007/s11425-009-0206-4

Abstract

The conformal geometry of regular hypersurfaces in the conformal space is studied. We classify all the conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in the conformal space up to conformal equivalence.

Keywords

Lorentz conformal geometryconformal invariantsconformal isoparametric hypersurfaces

MSC(2000)

53A3053C42

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2010