Skip to main content
Log in

Structure of constituents isolated from the flower buds of Cananga odorata and their inhibitory effects on aldose reductase

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Three new terpenoid derivatives, canangaterpenes IV–VI, were isolated from the flower buds of Cananga odorata, cultivated in Thailand, together with eight known flavonoids. The chemical structures of the new compounds were elucidated on the basis of chemical and physicochemical evidence. The inhibitory effects of the isolated compounds on aldose reductase were also investigated. Several terpenoid derivatives and flavonoids were shown to inhibit aldose reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. This paper is number 44 in the series “Medicinal Flowers”

  2. Matsumoto T, Nakamura S, Nakashima S, Fujimoto K, Yoshikawa M, Ohta T, Ogawa K, Matsuda H (2014) Structures of lignan dicarboxylates and terpenoids from the flower buds of Cananga odorata and their inhibitory effects on melanogenesis. J Nat Prod 77:990–999

  3. Nakamura S, Fujimoto K, Matsumoto T, Nakashima S, Ohta T, Ogawa K, Matsuda H, Yoshikawa M (2013) Acylated sucroses and acylated quinic acids analogs from the flower buds of Prunus mume and their inhibitory effects on melanogenesis. Phytochemistry 92:128–136

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura S, Nakashima S, Tanabe G, Oda Y, Yokota N, Fujimoto K, Matsumoto T, Sakuma R, Ohta T, Ogawa K, Nishida S, Miki H, Matsuda H, Muraoka O, Yoshikawa M (2013) Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg Med Chem 21:779–787

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura S, Fujimoto K, Nakashima S, Matsumoto T, Miura T, Uno K, Matsuda H, Yoshikawa M (2012) Medicinal Flowers. XXXVI. Acylated oleanane-type triterpene saponins with inhibitory effects on melanogenesis from the flower buds of Chinese Camellia japonica. Chem Pharm Bull 60:752–758

    Article  CAS  PubMed  Google Scholar 

  6. Fujimoto K, Nakamura S, Nakashima S, Matsumoto T, Uno K, Ohta T, Miura T, Matsuda H, Yoshikawa M (2012) Medicinal Flowers. XXXV. Nor-oleanane-type and acylated oleanane-type triterpene saponins from the flower buds of Chinese Camellia japonica and their inhibitory effects on melanogenesis. Chem Pharm Bull 60:1188–1194

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura S, Moriura T, Park S, Fujimoto K, Matsumoto T, Ohta T, Matsuda H, Yoshikawa M (2012) Melanogenesis inhibitory and fibroblast proliferation accelerating effects of noroleanane- and oleanane-type triterpene oligoglycosides from the flower buds of Camellia japonica. J Nat Prod 75:1425–1430

    Article  CAS  PubMed  Google Scholar 

  8. Nagashima J, Matsunami K, Otsuka H, Lhieochaiphant D, Lhieochaiphant S (2010) The unusual canangafruticosides A-E: five monoterpene glucosides, two monoterpenes and a monoterpene glucoside diester of the aryldihydronaphthalene lignan dicarboxylic acid from leaves of Cananga odorata var. fruticosa. Phytochemistry 71:1564–1572

    Article  CAS  PubMed  Google Scholar 

  9. Xie W-D, Niu Y-F, Lai P-X, Row K-H (2010) Sesquiterpenoids and other constituents from Senecio argunensis. Chem Pharm Bull 58:991–994

    Article  CAS  PubMed  Google Scholar 

  10. Nishizawa M, Inoue A, Hayashi Y, Sastrapradja S, Kosela S, Iwashita T (1984) Structure of aphanamols I and II. J Org Chem 49:3660–3662

    Article  CAS  Google Scholar 

  11. Zdero C, Bohlmann F, Niemeyer HM (1991) Glaucolides from old world Vernonia species. Phytochemistry 30:3683–3691

    Article  CAS  Google Scholar 

  12. Wu C-L, Chien S-C, Wang S-Y, Kuo Y-H, Chang S-T (2005) Structure-activity relationships of cadinane-type sesquiterpene derivatives against wood-decay fungi. Holzforschung 59:620–627

    Article  CAS  Google Scholar 

  13. Ohmoto T, Ikeda K, Nomura S, Shimizu M, Saito S (1987) Studies on the sesquiterpenes from Ambrosia eratior Linne. Chem Pharm Bull 35:2272–2279

    Article  CAS  Google Scholar 

  14. Brown GD, Liang G-Y, Sy L-K (2003) Terpenoids from the seeds of Artemisia annua. Phytochemistry 64:303–323

    Article  CAS  PubMed  Google Scholar 

  15. Nowak S, Wolbis M (2002) Flavonoids from some species of genus Scopolia Jacq. Acta Pol Pharm 59:275–280

    CAS  PubMed  Google Scholar 

  16. Markham KR, Ternai B (1976) Carbon-13 NMR of flavonoids. II. Flavonoids other than flavone and flavonol aglycons. Tetrahedron 53:432–434

    Google Scholar 

  17. Chaurasia N, Wichtl M (1987) Flavonol glycosides from Urtica dioica. Planta Med 53:432–434

    Article  CAS  PubMed  Google Scholar 

  18. Chr K, Mueller G, Pedersen PA (1982) Flavonoids in the flowers of Primula officinalis. J Nat Prod 45:557–559

    Article  Google Scholar 

  19. Rayyan S, Fossen T, Solheim Nateland H, Andersen OM (2005) Isolation and identification of flavonoids, including flavone rotamers, from the herbal drug ‘Crataegi Folium Cum Flore’ (Hawthorn). Phytochem Anal 16:334–341

    Article  CAS  PubMed  Google Scholar 

  20. Romussi G, Sancassan F, Parodi B, Bignardi G (1984) Constituents of Cupuliferae, 8. A novel, highly-acylated astragalin from Quercus ilex L. Liebigs Ann Chem 11:1864–1866

    Article  Google Scholar 

  21. Beck M-A, Haberlein H (1998) Flavonol glycosides from Eschscholtzia California. Phytochemistry 50:329–332

    Article  Google Scholar 

  22. Tsukamoto S, Tomise K, Aburatani M, Onuki H, Hirorta H, Ishiharajima E, Ohta T (2004) Isolation of cytochrome P450 inhibitors from strawberry fruit, Fragaria ananassa. J Nat Prod 67:1839–1841

    Article  CAS  PubMed  Google Scholar 

  23. Matsuda H, Asao Y, Nakamura S, Hamao M, Sugimoto S, Hongo M, Pongpiriyadacha Y, Yoshikawa M (2009) Antidiabetogenic constituents from the Thai traditional medicine Cotylelobium melanoxylon. Chem Pharm Bull 57:487–494

    Article  CAS  PubMed  Google Scholar 

  24. Fujimoto K, Nakamura S, Matsumoto T, Ohta T, Yoshikawa M, Ogawa K, Kashiwazaki E, Matsuda H (2014) Structures of acylated sucroses from the flower buds of Prunus mume. J Nat Med (in press). doi:10.1007/s11418-014-0818-z

  25. Fujimoto K, Nakamura S, Matsumoto T, Ohta T, Ogawa K, Tamura H, Matsuda H, Yoshikawa M (2013) Medicinal flowers. XXXVIII. Structures of acylated sucroses and inhibitory effects of constituents on aldose reductase from the flower buds of Prunus mume. Chem Pharm Bull 61:445–451

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura S, Fujimoto K, Matsumoto T, Ohta T, Ogawa K, Tamura H, Matsuda H, Yoshikawa M (2013) Structures of acylated sucroses and an acylated flavonol glycoside and inhibitory effects of constituents on aldose reductase from the flower buds of Prunus mume. J Nat Med 67:799–806

    Article  CAS  PubMed  Google Scholar 

  27. Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2002) Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem Pharm Bull 50:972–975

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Ministry of Education, Culture, Sports, Science and Technology (MEXT)-Supported Program for the Strategic Research Foundation at Private Universities, by a Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Nakamura, S., Fujimoto, K. et al. Structure of constituents isolated from the flower buds of Cananga odorata and their inhibitory effects on aldose reductase. J Nat Med 68, 709–716 (2014). https://doi.org/10.1007/s11418-014-0843-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0843-y

Keywords

Navigation