Skip to main content

Advertisement

Log in

Insights into mechanisms underlying the gut and airways modulatory effects of Swertia chirata

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Swertia chirata is used in folk medicine for the treatment of constipation, colic, diarrhea, and asthma. This study was carried out in order to provide a pharmacological basis for its medicinal use in gastrointestinal and respiratory disorders. Crude extract of Swertia chirata (Sc.Cr) and its fractions were studied using rabbit isolated tissue preparations. In jejunum, Sc.Cr, which tested positive for alkaloids, flavonoids, saponins, tannins, and terpenes, caused stimulation at concentrations of 0.01–1.0 mg/mL, followed by a relaxant effect at higher concentrations. In the presence of atropine, the contractile effect was blocked and only relaxation occurred. Sc.Cr inhibited high K+ (80 mM)-induced contractions at 0.01–10 mg/mL and shifted Ca2+ concentration–response curves to the right, similar to that caused by verapamil. In trachea, Sc.Cr relaxed the carbachol (1 μM) and high K+-induced contractions, in a pattern similar to that of verapamil. Bioassay directed fractionation revealed the separation of spasmogenic and spasmolytic components in aqueous and organic fractions, respectively. The chloroform fraction exhibited a concentration-dependent (0.1–3.0 mg/mL) bronchodilator effect. These results indicate that Swertia chirata exhibits gut excitatory and inhibitory effects, mediated through cholinergic and Ca2+ antagonist mechanisms, respectively, as well as bronchodilatation, via Ca2+ channel blockade. Thus, this study provides a sound mechanistic background for the therapeutic application of Swertia chirata in gut motility disorders, such as constipation, colic, and diarrhea, and airways hyperactivity disease, such as asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Joshi P, Dhawan V (2005) Swertia chirayita—an overview. Curr Sci 89:635–640

    CAS  Google Scholar 

  2. Nadkarni KM (1976) Indian materia medica, 3rd edn. Popular Prakashan, Bombay, pp 1184–1185

    Google Scholar 

  3. Duke JA, Bogenschutz-Godwin MJ, duCellier J, Duke PAK (2002) Handbook of medicinal herbs, 2nd edn. CRC Press, Boca Raton, p 190

    Book  Google Scholar 

  4. Chatterjee A, Pakrashi SC (1995) The treatise on Indian medicinal plants, vol 4. CSIR, New Delhi, pp 92–94

  5. Duke JA (1992) Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton, p 581

    Google Scholar 

  6. Friedhelm K, Hans GS (1956) Chemical classification of plants XII. Amarogentin. Chem Ber 89:2404–2407

    Article  Google Scholar 

  7. Friedhelm K (1955) Characteristic plant constituents. IX. Amarogentin, a new bitter principle from Gentianaceae. Chem Ber 88:704–707

    Article  Google Scholar 

  8. Bhattacharya SK, Reddy PK, Ghosal SP, Singh AK, Sharma PV (1976) Chemical constituents of Gentianaceae XIX: CNS-depressant effects of swertiamarin. J Pharm Sci 65:1547–1549

    Article  PubMed  CAS  Google Scholar 

  9. Chandrasekar B, Bajpai MB, Mukherjee SK (1990) Hypoglycemic activity of Swertia chirayita (Roxb ex Flem) Karst. Indian J Exp Biol 28:616–618

    PubMed  CAS  Google Scholar 

  10. Chowdhary NI, Bandyopadhyay SK, Banerjee SN, Dutta MK, Das PC (1995) Preliminary studies on the anti-inflammatory effects of Swertia chirata in albino rats. Indian J Pharmacol 27:37–39

    Google Scholar 

  11. Karan M, Vasisht K, Handa SS (1999) Antihepatotoxic activity of Swertia chirata on paracetamol and galactosamine induced hepatotoxicity in rats. Phytother Res 13:95–101

    Article  PubMed  CAS  Google Scholar 

  12. Bhargava S, Garg R (2007) Evaluation of antibacterial activity of aqueous extract of Swertia chirata Buch. Ham. root. Int J Green Pharm 1:51–52

    Google Scholar 

  13. Khanom F, Kayahara H, Tadasa K (2000) Superoxide-scavenging and prolyl endopeptidase inhibitory activities of Bangladeshi indigenous medicinal plants. Biosci Biotechnol Biochem 64:837–840

    Article  PubMed  CAS  Google Scholar 

  14. Rafatullah S, Tariq M, Mossa JS, Al-Yahya MA, Al-Said MS, Ageel AM (1993) Protective effect of Swertia chirata against indomethacin and other ulcerogenic agent-induced gastric ulcers. Drugs Exp Clin Res 19:69–73

    PubMed  CAS  Google Scholar 

  15. Saha P, Mandal S, Das A, Das PC, Das S (2004) Evaluation of the anticarcinogenic activity of Swertia chirata Buch.Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother Res 18:373–378

    Article  PubMed  Google Scholar 

  16. Bhargava S, Rao PS, Bhargava P, Shukla S (2009) Antipyretic potential of Swertia chirata Buch Ham. root extract. Sci Pharm 77:617–623

    Article  CAS  Google Scholar 

  17. Williamson EM, Okpako DT, Evans FJ (1996) Selection, preparation, and pharmacological evaluation of plant material. John Wiley & Sons, Chichester, pp 15–23

    Google Scholar 

  18. Gilani AH, Mehmood MH, Janbaz KH, Khan A, Saeed SA (2009) Gut modulatory and antiplatelet activities of Viscum cruciatum. Pharm Biol 47:955–961

    Article  Google Scholar 

  19. National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, pp 1–7

    Google Scholar 

  20. Gilani AH, Khan AU, Subhan F, Khan M (2005) Antispasmodic and bronchodilator activities of St. John’s wort are putatively mediated through dual inhibition of calcium influx and phosphodiesterase. Fundam Clin Pharmacol 19:695–705

    Article  PubMed  CAS  Google Scholar 

  21. Farre AJ, Colombo M, Fort M, Gutierrez B (1991) Differential effects of various Ca2+ antagonists. Gen Pharmacol 22:177–181

    Article  PubMed  CAS  Google Scholar 

  22. Musha S, Watanabe M, Ishida Y, Kato S, Konishi M, Tomoda A (2005) A phenoxazine compound, 2-amino-4,4α-dihydro-4α-7-dimethyl-3H-phenoxazine-3-one reverses the phenylephrine or high-K+ induced contraction of smooth muscles in rat aorta and guinea pig tenia cecum. Biol Pharm Bull 28:1521–1523

    Article  PubMed  CAS  Google Scholar 

  23. Gilani AH, Shah AJ, Ghayur MN, Majeed K (2005) Pharmacological basis for the use of turmeric in gastrointestinal and respiratory disorders. Life Sci 76:3089–3105

    Article  PubMed  CAS  Google Scholar 

  24. Delmendo RE, Michel AD, Whiting RL (1989) Affinity of muscarinic receptor antagonists for three putative muscarinic receptor binding sites. Br J Pharmacol 96:457–464

    PubMed  CAS  Google Scholar 

  25. Brown JH, Taylor P (1996) Muscarinic receptor agonists and antagonists. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG (eds) The pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 141–159

    Google Scholar 

  26. Gilani AH, Bashir S, Janbaz KH, Khan A (2005) Pharmacological basis for the use of Fumaria indica in constipation and diarrhea. J Ethnopharmacol 96:585–589

    Article  PubMed  Google Scholar 

  27. Gilani AH, Ghayur MN, Khalid A, Zaheer-ul-Haq, Choudhary MI, Atta-ur-Rahman (2005) Presence of antispasmodic, antidiarrheal, antisecretory, calcium antagonist and acetylcholinesterase inhibitory steroidal alkaloids in Sarcococca saligna. Planta Med 71:120–125

    Article  CAS  Google Scholar 

  28. Gilani AH, Shah AJ, Janbaz KH, Ahmed SP, Ghayur MN (2007) Studies on antihypertensive and antispasmodic activities of Andropogon muricatus Retz. Can J Physiol Pharmacol 85:911–917

    Article  PubMed  CAS  Google Scholar 

  29. Bolton TB (1979) Mechanism of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    PubMed  CAS  Google Scholar 

  30. Pietrobon D, Hess P (1990) Novel mechanism of voltage-dependent gating in L-type calcium channels. Nature 346:651–655

    Article  PubMed  CAS  Google Scholar 

  31. Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano KI, Harada KI, Miyamoto S, Nakazawa H, Won KJ, Sato K (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 49:157–230

    PubMed  CAS  Google Scholar 

  32. Godfraind T, Miller R, Wibo M (1986) Calcium antagonism and calcium entry blockade. Pharmacol Rev 38:321–416

    PubMed  CAS  Google Scholar 

  33. Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann Rev Pharmacol Toxicol 17:149–166

    Article  CAS  Google Scholar 

  34. Pasricha PJ (2006) Treatment of disorders of bowel motility and water flux: antimemetics; agents used in biliary and pancreatic disease. In: Brunton LL, Lazo JS, Parker KL, Gilman AG (eds) The pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 983–1008

    Google Scholar 

  35. Ghayur MN, Gilani AH (2005) Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders. Dig Dis Sci 50:1889–1897

    Article  PubMed  Google Scholar 

  36. Gilani AH, Bashir S, Janbaz KH, Shah AJ (2005) Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosasinensis in constipation and diarrhoea. J Ethnopharmacol 102:289–294

    Article  PubMed  Google Scholar 

  37. Ghayur MN, Khan H, Gilani AH (2007) Antispasmodic, bronchodilator and vasodilator activities of (+)-catechin, a naturally occurring flavonoid. Arch Pharm Res 30:970–975

    Article  PubMed  CAS  Google Scholar 

  38. Mathewson HS (1985) Anti-asthmatic properties of calcium antagonists. Respir Care 30:779–781

    Google Scholar 

  39. Gilani AH, Khan A, Ghayur MN (2006) Presence of calcium antagonist and cholinomimetic constituents explains the medicinal uses of olives in gastrointestinal disorders. Nutr Res 26:277–283

    Article  CAS  Google Scholar 

  40. Gilani AH, Jabeen Q, Khan AU, Shah AJ (2008) Gut modulatory, blood pressure lowering, diuretic and sedative activities of cardamom. J Ethnopharmacol 115:463–472

    Article  PubMed  CAS  Google Scholar 

  41. Sturton RG, Trifilieff A, Nicholson AG, Barnes PJ (2008) Pharmacological characterization of indacaterol, a novel once daily inhaled β2 adrenoceptor agonist, on small airways in human and rat precision-cut lung slices. J Pharmacol Exp Ther 324:270–275

    Article  PubMed  CAS  Google Scholar 

  42. Gilani AH, Aziz N, Khurram IM, Chaudhary KS, Iqbal A (2001) Bronchodilator, spasmolytic and calcium antagonist activities of Nigella sativa seeds (Kalonji): a traditional herbal product with multiple medicinal uses. J Pak Med Assoc 51:115–120

    PubMed  CAS  Google Scholar 

  43. Benet LZ (1982) Pharmacokinetics: absorption, distribution and excretion. In: Katzung BG (ed) Basic and clinical pharmacology, 2nd edn. Lange Medical Publications, California, pp 23–34

    Google Scholar 

  44. Gilani AH, Aftab K, Ahmed S (1994) Cholinergic actions of crude saponins from Castanospermum australe. Int J Pharmacog 32:209–216

    Article  CAS  Google Scholar 

  45. Revuelta MP, Cantabrana B, Hidalgo A (1997) Depolarization-dependent effect of flavonoids in rat uterine smooth muscle contraction elicited by CaCl2. Gen Pharmacol 29:847–857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Higher Education Commission of Pakistan. The authors are thankful to Dr. Philip Kopf and Tamas Kriska, Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA, for the editorial corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwarul-Hassan Gilani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Au., Rahim, A., Iqbal, Z. et al. Insights into mechanisms underlying the gut and airways modulatory effects of Swertia chirata . J Nat Med 66, 140–148 (2012). https://doi.org/10.1007/s11418-011-0566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0566-2

Keywords

Navigation