Skip to main content
Log in

Environmental and geometric optimisation of cylindrical drinking water storage tanks

  • BUILDING COMPONENTS AND BUILDINGS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Urban water cycle construction processes are an important element to consider when assessing the sustainability of urban areas. The present study focuses on a structural and environmental analysis of cylindrical water tanks. The goal is to optimise cylindrical water tanks from both an environmental (environmental impacts due of life cycle assessment (LCA)) and a geometric perspective (building material quantities for construction purposes depending on the tank characteristics).

Methods

A sample of 147 cases was defined based on different positions (buried, superficial and partially buried), dimensions (combinations of heights and radii) and storage capacities (between 100 and 10,000 m3). A structural analysis was conducted for a defined set of cases to determine the quantities of steel and concrete required for its construction. The environmental impacts of the entire life cycle were assessed through a life cycle assessment (LCA). Additionally, environmental standards (the less impactful option for each dimension assessed: geometry, storage capacity and position) defined in the study were applied to realistic cases to evaluate potential environmental savings.

Results and discussion

The LCA shows that materials are the main contributor to environmental impacts (more than transport, installation and end of life cycle stages). For this reason, the results of the structural and environmental assessments coincide. Taller water tanks have shown to be less impactful (60 to 70 % less impact for a 10.000-m3 tank). Regarding the position, superficial water tanks have shown to have between 15 and 35 % less impact than buried ones. The environmentally preferred water storage capacity is between 1000 and 2500 m3, being between 20 and 40 % less impact. For instance, an 8000-m3 tank would emit 1040 t of CO2 eq. Applying the environmental standards 170.5 t of CO2 eq could be saved (16 % of the total amount).

Conclusions

The results of this study show that among the cases analysed, superficially positioned cylindrical water tanks of 8.5 m in height and of between 1000 and 2500 m3 in storage capacity present fewer impacts. The use of these standards in municipal water tanks construction projects may significantly reduce environmental impacts (10 to 40 %) in all impact categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ADP:

Abiotic depletion potential

AP:

Acidification potential

fctm:

Average tensile strength of the concrete

B:

Buried

CEDEX:

Centro de Estudios y Experimentación de Obras Públicas

fck:

Compressive strength

CED:

Cumulative energy demand

C:

Cylindrical

DWTDN:

Drinking water transport and distribution network

Es:

Elastic modulus

EP:

Eutrophication potential

D:

Flexural rigidity

GWP:

Global warming potential

a:

Height

ISO:

International Standard Association

LCA:

Life cycle assessment

w max :

Maximum crack width

AS geom min :

Minimum geometric reinforcement amount

AS mec min :

Minimum mechanical reinforcement amount

E:

Modulus of elasticity

ODP:

Ozone layer depletion

PB:

Partially buried

POCPPOCP:

Photochemical oxidation potential

R:

Radius

SLS:

Serviceability limit state

Hs:

Soil height

r nom :

Steel covering

S:

Superficial

ULS:

Ultimate limit state

UNESCO:

United Nations Educational, Scientific and Cultural Organization

UWC:

Urban water cycle

EPA:

US Environmental Protection Agency’s

Hw:

Water height

fyk:

Yield strength

References

  • Agbar © (2013) http://www.agbar.es/en/home.html [Accessed on September 2013]

  • Amores MJ, Meneses M, Pasqualino J, Antón A, Castells F (2013) Environmental assessment of urban water cycle on Mediterranean conditions by LCA approach. J Clean Prod 43:84–92

    Article  Google Scholar 

  • Angrill S, Farreny R, Gasol CM, Gabarrell X, Viñolas B, Josa A, Rieradevall J (2011) Environmental analysis of rainwater harvesting infrastructures in diffuse and compact urban models of Mediterranean climate. Int J Life Cycle Assess 17(1):25–42

    Article  Google Scholar 

  • AWWA (American Water Works Association) (1995) Modeling, Analysis, and Design of Water Distribution Systems. AWWA, Denver, Colo

    Google Scholar 

  • CEDEX, Centro de Estudios Hidrográficos (2009) Guía Técnica sobre tuberías para el transporte de agua a presión, sixth ed., ISBN 978-84-7790-492-2

  • CPH (2008) Instrucción del Hormigón Estructural EHE-08. Ministerio de Fomento, Madrid

    Google Scholar 

  • Del Borghi A, Gaggero PL, Gallo M, Strazza C (2008) Development of PCR for WWTP based on a case study. Int J Life Cycle Assess 13(6):512–521

    Article  Google Scholar 

  • Del Borghi A, Strazza C, Gallo M, Messineo S, Naso M (2013) Water supply and sustainability: life cycle assessment of water collection, treatment and distribution service. Int J Life Cycle Assess 18(5):1158–1168

    Article  Google Scholar 

  • ecoinvent (2009) Swiss Centre for Life Cycle Inventories. Ecoinvent database v3.0. Technical report. http://www.ecoinvent.ch/ Accessed June 2014

  • Environmental Protection Agency (EPA) (2002) Finished Water Storage Facilities. PDF Document retrieved from http://water.epa.gov/lawsregs/rulesregs/sdwa/tcr/upload/2007_05_18_disinfection_tcr_whitepaper_tcr_storage.pdf

  • Friedrich E, Pillay S, Buckley CA (2009) Carbon footprint analysis for increasing water supply and sanitation in South Africa: a case study. J Clean Prod 17(1):1–12

    Article  CAS  Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, ISBN 1-4020-0228-9, Dordrecht, 692 pp

  • Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96

    Article  Google Scholar 

  • Hospido A, Moreira MT, Feijoo G (2008) A comparison of municipal wastewater treatment plants for big centres of population in Galicia (Spain). Int J Life Cycle Assess 13(1):57–64

    Article  CAS  Google Scholar 

  • ISO 14040 (2006) Environmental management -- Life cycle assessment -- Principles and framework

  • Kellenberger D, Althaus HJ (2009) Relevance of simplifications in LCA of building components. Build Environ 44(4):818–825

    Article  Google Scholar 

  • Lassaux S, Renzoni R, Germain A (2007) Life cycle assessment of water: from the pumping station to the wastewater treatment plant. Int J Life Cycle Assess 12(2):118–126

    Article  CAS  Google Scholar 

  • Lemos D, Dias AC, Gabarrell X, Arroja L (2013) Environmental assessment of an urban water system. J Clean Prod 54:157–165

    Article  CAS  Google Scholar 

  • Llopart-Mascaró A, Farreny R, Gabarrell X, Rieradevall J, Gil A, Martínez M, Puerta J, Suárez J, del Río H, Paraira M (2014) Storm tank against combined sewer overflow: operation strategies to minimise discharges impact to receiving waters. Urban Water J 12(3):219–228

    Article  Google Scholar 

  • Mendoza J-MF, Oliver-Solà J, Gabarrell X, Rieradevall J, Josa A (2012) Planning strategies for promoting environmentally suitable pedestrian pavements in cities. Transport Res D-Tr E 17(6):442–450

    Article  Google Scholar 

  • Metabase Itec (2010) Online ITeC Database: Prices, Technical Details, Companies, Certificates, Product Pictures and Environmental Data. Retrieved from: http://www.itec.cat/metabase (accessed June 2014)

  • Muñoz I, Milà-i-Canals L, Fernández-Alba AR (2010) Life Cycle Assessment of Water Supply Plans in Mediterranean Spain. J Ind Ecol 14(6):902–918

    Article  Google Scholar 

  • Noori M, Kucukvar M, Tatari O (2013) A macro-level decision analysis of wind power as a solution for sustainable energy in the USA. Int J Sust Energy 34(10):629–644

    Article  Google Scholar 

  • Noori M, Kucukvar M, Tatari O (2014) Economic Input–Output Based Sustainability Analysis of Onshore and Offshore Wind Energy Systems. Int J Green Energy 12(9):939–948

    Article  Google Scholar 

  • Oliver-Solà J, Josa A, Rieradevall J, Gabarrell X (2009) Environmental optimization of concrete sidewalks in urban areas. Int J Life Cycle Assess 14(4):302–312

    Article  Google Scholar 

  • Orbe AM (2013) Optimización del uso de Hormigones Autocompactantes Reforzados con Fibras de Acero en Aplicaciones Convencionales de Resistencias Moderadas. Tesis Doctoral. Universidad del País Vasco, 2013

  • Petit-Boix A, Sanjuan-Delmás D, Gasol CM, Villalba G, Suárez-Ojeda ME, Gabarrell X, Josa A, Rieradevall J (2014) Environmental Assessment of Sewer Construction in Small to Medium Mid-sizedSized Cities Using Life Cycle Assessment. Water Resour Manag 28(4):979–997

    Article  Google Scholar 

  • Piratla KR, Asce SM, Ariaratnam ST, Asce M, Cohen A (2012) Estimation of CO 2 Emissions from the Life Cycle of a Potable Water Pipeline Project, (January), 22–30. doi:10.1061/(ASCE)ME.1943-5479.0000069

  • Riba Genescà E (2006) “Cálculo y elección óptima de un depósito de agua”. Director: Antonio Aguado. Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l’Enginyeria, Barcelona, 2006.

  • Sanjuan-Delmás D, Petit-Boix A, Gasol CM, Villalba G, Suárez-Ojeda ME, Gabarrell X, Josa A, Rieradevall J (2013) Environmental assessment of different pipelines for drinking water transport and distribution network in small to medium cities: a case from Betanzos, Spain. J Clean Prod 66:588–598

    Article  Google Scholar 

  • Sanjuan-Delmás D, Petit-Boix A, Gasol CM, Farreny R, Villalba G, Suárez-Ojeda ME, Gabarrell X, Josa A, Rieradevall J (2014) Environmental assessment of drinking water transport and distribution network use phase for small to medium-sized municipalities in Spain. J Clean Prod 87:573–582

    Article  Google Scholar 

  • Sharma AK, Grant AL, Grant T, Pamminger F, Opray L (2009) Environmental and Economic Assessment of Urban Water Services for a Greenfield Development. Environ Eng Sci 26(5):921–934

    Article  CAS  Google Scholar 

  • Spanish Ministry of Public Works (2008). EHE-08 Instrucción de Hormigón Estructural. ISBN: 978-84-498-0899-9

  • Stokes J, Horvath A (2011) Life-cycle assessment of urban water provision: tool and case study in California. J Infrastruct Syst 17(1):15–24

    Article  Google Scholar 

  • Takeuchi H, Asce M, Taketomi S, Samukawa S, Nanni A, Asce F (2004) Renovation of Concrete Water Tank in Chiba Prefecture, Japan. Practice Periodical on Structural Design and Construction, American Society of Civil Engineers Library. (November 2004), pp 237–241

  • United Nations Educational, Scientific, and Cultural Organization (UNESCO) (2012). Managing water under uncertainty and risk. In: The United Nations World Water Development Report 4, vol. 1. PDF document retrieved from: http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/#c219661

  • Vargas-Parra MV, Villalba G, Gabarrell X (2013) Applying exergy analysis to rainwater harvesting systems to assess resource efficiency. Resour Conserv Recy 72:50–59

    Article  Google Scholar 

  • Venkatesh G, Brattebø H (2011) Energy consumption, costs and environmental impacts for urban water cycle services: case study of Oslo (Norway). Energy 36(2):792–800

    Article  Google Scholar 

  • Venkatesh G, Brattebø H (2012) Assessment of Environmental Impacts of an Aging and Stagnating Water Supply Pipeline Network. J Ind Ecol 16(5):722–734

    Article  Google Scholar 

  • Walski TM (2000) Hydraulic Design of Water Distribution Storage Tanks. In: Mays LW (ed) Chapter 10 in Water Distribution Systems Handbook. McGraw-Hill, New York. NY

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Government of Catalonia for awarding a research scholarship (FI-DGR 2014) to David Sanjuan Delmás and for its economic support of the research team (2014 SGR 1412).

The authors are also grateful for support provided by the Spanish Ministry of Education and Science through the BIA project (2010-20789-C04-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sanjuan-Delmás.

Additional information

Responsible editor: Adriana Del Borghi

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanjuan-Delmás, D., Hernando-Canovas, E., Pujadas, P. et al. Environmental and geometric optimisation of cylindrical drinking water storage tanks. Int J Life Cycle Assess 20, 1612–1624 (2015). https://doi.org/10.1007/s11367-015-0963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-015-0963-y

Keywords

Navigation