Skip to main content

Advertisement

Log in

Interleukin-8 and interleukin-10, brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Higher systemic levels of the proinflammatory cytokine interleukin-6 (IL-6) were found to be associated with lower gray matter volume and tissue density in old rhesus macaques. This association between IL-6, and these brain indices were attenuated by long-term 30 % calorie restriction (CR). To extend these findings, the current analysis determined if a CR diet in 27 aged rhesus monkeys compared to 17 normally fed controls reduced circulating levels of another proinflammatory cytokine, interleukin-8 (IL-8), and raised levels of anti-inflammatory interleukin-10 (IL-10). Further, these cytokines were regressed onto imaged brain volume and microstructure using voxel-wise regression analyses. CR significantly lowered IL-8 and raised IL-10 levels. Across the two dietary conditions, higher IL-8 predicted smaller gray matter volumes in bilateral hippocampus. Higher IL-10 was associated with more white matter volume in visual areas and tracts. Consuming a CR diet reduced the association between systemic IL-8 and hippocampal volumes. Conversely, CR strengthened associations between IL-10 and microstructural tissue density in the prefrontal cortex and other areas, particularly in a region of dorsal prefrontal cortex, which concurred with our prior findings for IL-6. Consumption of a CR diet lowered proinflammatory and increased anti-inflammatory cytokine concentrations, which lessened the statistical association between systemic inflammation and the age-related alterations in important brain regions, including the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alter A, Duddy M, Hebert S, Biernacki K, Prat A, Antel JP, Yong VW, Nuttall RK, Pennington CJ, Edwards DR, Bar-Or A (2003) Determinants of human B cell migration across brain endothelial cells. J Immunol 170(9):4497–4505

    PubMed  CAS  Google Scholar 

  • Alvarez-Rodríguez L, López-Hoyos M, Muñoz-Cacho P, Martínez-Taboada VM (2012) Aging is associated with circulating cytokine dysregulation. Cell Immunol 273(2):124–132

    Article  PubMed  Google Scholar 

  • Araujo DM, Cotman CW (1993) Trophic effects of interleukin-4, -7 and −8 on hippocampal neuronal cultures: potential involvement of glial-derived factors. Brain Res 600(1):49–55

    Article  PubMed  CAS  Google Scholar 

  • Ashburner J (2007) A fast diffeomorphic image registration algorithm. NeuroImage 38(1):95–113

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11(6 Pt 1):805–821

    Article  PubMed  CAS  Google Scholar 

  • Asquith M, Haberthur K, Brown M, Engelmann F, Murphy A, Al-Mahdi Z, Messaoudi I (2012) Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta). Pathobiol Aging Age Relat Dis. doi:10.3402/pba.v2i0.18052

  • Baggiolini M, Walz A, Kunkel SL (1989) Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest 84(4):1045–1049

    Article  PubMed  CAS  Google Scholar 

  • Bendlin BB, Canu E, Willette A, Kastman EK, McLaren DG, Kosmatka KJ, Xu G, Field AS, Colman RJ, Coe CL, Weindruch RH, Alexander AL, Johnson SC (2011) Effects of aging and calorie restriction on white matter in rhesus macaques. Neurobiol Aging 32(12):2319 e1–11

    Article  Google Scholar 

  • Benedetti B, Charil A, Rovaris M, Judica E, Valsasina P, Sormani MP, Filippi M (2006) Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRI. Neurology 66(4):535–539

    Article  PubMed  CAS  Google Scholar 

  • Boekholdt SM, Peters RJ, Hack CE, Day NE, Luben R, Bingham SA, Wareham NJ, Reitsma PH, Khaw KT (2004) IL-8 plasma concentrations and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol 24(8):1503–1508

    Article  PubMed  CAS  Google Scholar 

  • Bulcao C, Ferreira SR, Giuffrida FM, Ribeiro-Filho FF (2006) The new adipose tissue and adipocytokines. Curr Diabetes Rev 2(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204

    Article  PubMed  CAS  Google Scholar 

  • Cross AK, Woodroofe MN (1999) Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res 55(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Crujeiras AB, Parra D, Milagro FI, Goyenechea E, Larrarte E, Margareto J, Martinez JA (2008) Differential expression of oxidative stress and inflammation related genes in peripheral blood mononuclear cells in response to a low-calorie diet: a nutrigenomics study. Omics 12(4):251–261

    Article  PubMed  CAS  Google Scholar 

  • Dantzer R (2004) Innate immunity at the forefront of psychoneuroimmunology. Brain Behav Immun 18(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Desikan RS, Sabuncu MR, Schmansky NJ, Reuter M, Cabral HJ, Hess CP, Weiner MW, Biffi A, Anderson CD, Rosand J, Salat DH, Kemper TL, Dale AM, Sperling RA, Fischl B (2010) Selective disruption of the cerebral neocortex in Alzheimer’s disease. PLoS One 5(9):e12853

    Article  PubMed  Google Scholar 

  • Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J (1997) Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 18(3):470–479

    Article  PubMed  CAS  Google Scholar 

  • Dinkel K, Dhabhar FS, Sapolsky RM (2004) Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures. Proc Natl Acad Sci U S A 101(1):331–336

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich LC, Hu S, Sheng WS, Sutton RL, Rockswold GL, Peterson PK, Chao CC (1998) Cytokine regulation of human microglial cell IL-8 production. J Immunol 160(4):1944–1948

    PubMed  CAS  Google Scholar 

  • Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40(2):232–239

    Article  PubMed  CAS  Google Scholar 

  • Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, Tsai WY, Schaefer CA, Brown AS (2010) Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res 121(1–3):46–54

    Article  PubMed  Google Scholar 

  • Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC (1995) Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 33(5):636–647

    Article  PubMed  CAS  Google Scholar 

  • Franciosi S, Choi HB, Kim SU, McLarnon JG (2005) IL-8 enhancement of amyloid-beta (Abeta 1–42)-induced expression and production of pro-inflammatory cytokines and COX-2 in cultured human microglia. J Neuroimmunol 159(1–2):66–74

    Article  PubMed  CAS  Google Scholar 

  • Galimberti D, Schoonenboom N, Scarpini E, Scheltens P (2003) Chemokines in serum and cerebrospinal fluid of Alzheimer’s disease patients. Ann Neurol 53(4):547–548

    Article  PubMed  Google Scholar 

  • Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, Guidi I, Blankenstein MA, Bresolin N, Scarpini E (2006) Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 63(4):538–543

    Article  PubMed  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14(1 Pt 1):21–36

    Article  PubMed  CAS  Google Scholar 

  • Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13(5):769–780

    Article  PubMed  CAS  Google Scholar 

  • Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317

    Article  PubMed  CAS  Google Scholar 

  • Hickey WF (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11(2):125–137

    Article  PubMed  CAS  Google Scholar 

  • Iverson GL, Hakulinen U, Wäljas M, Dastidar P, Lange RT, Soimakallio S, Öhman J (2011) To exclude or not to exclude: white matter hyperintensities in diffusion tensor imaging research. Brain Inj 25(13–14):1325–1332

    Article  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M, Schlomchik MJ (2005) Immunobiology: The immune system in health and disease, 6th edn. Garland, New York

    Google Scholar 

  • Kemnitz JW, Weindruch R, Roecker EB, Crawford K, Kaufman PL, Ershler WB (1993) Dietary restriction of adult male rhesus monkeys: design, methodology, and preliminary findings from the first year of study. J Gerontol 48(1):B17–B26

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Aiken JM, Havighurst T, Hollander J, Ripple MO, Weindruch R (1997) Adult-onset energy restriction of rhesus monkeys attenuates oxidative stress-induced cytokine expression by peripheral blood mononuclear cells. J Nutr 127(12):2293–2301

    PubMed  CAS  Google Scholar 

  • Leung E, Guo L, Bu J, Maloof M, El Khoury J, Geula C (2011) Microglia activation mediates fibrillar amyloid-β toxicity in the aged primate cortex. Neurobiol Aging 32(3):387–397

    Article  PubMed  CAS  Google Scholar 

  • Li K, Liu S, Yao S, Wang B, Dai D, Yao L (2009) Interaction between interleukin-8 and methylenetetrahydrofolate reductase genes modulates Alzheimer’s disease risk. Dement Geriatr Cogn Disord 27(3):286–291

    Article  PubMed  CAS  Google Scholar 

  • Licinio J, Wong ML, Gold PW (1992) Neutrophil-activating peptide-1/interleukin-8 mRNA is localized in rat hypothalamus and hippocampus. Neuroreport 3(9):753–756

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ, Guo DW, Tian L, Shang DS, Zhao WD, Li B, Fang WG, Zhu L, Chen YH (2010) Peripheral T cells derived from Alzheimer’s disease patients overexpress CXCR2 contributing to its transendothelial migration, which is microglial TNF-alpha-dependent. Neurobiol Aging 31(2):175–188

    Article  PubMed  CAS  Google Scholar 

  • McLaren DG, Kosmatka KJ, Oakes TR, Kroenke CD, Kohama SG, Matochik JA, Ingram DK, Johnson SC (2009) A population-average MRI-based atlas collection of the rhesus macaque. NeuroImage 45(1):52–59

    Article  PubMed  Google Scholar 

  • Miron N, Miron MM, Milea VG, Cristea V (2010) Proinflammatory cytokines: an insight into pancreatic oncogenesis. Roum Arch Microbiol Immunol 69(4):83–89

    Google Scholar 

  • Nagahara AH, Bernot T, Tuszynski MH (2010) Age-related cognitive deficits in rhesus monkeys mirror human deficits on an automated test battery. Neurobiol Aging 31(6):1020–1031

    Article  PubMed  Google Scholar 

  • Nelson PT, Stefansson K, Gulcher J, Saper CB (1996) Molecular evolution of tau protein: implications for Alzheimer’s disease. J Neurochem 67(4):1622–1632

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Huang X-F, Toga A (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, Orlando

    Google Scholar 

  • Ramsey JJ, Colman RJ, Binkley NC, Christensen JD, Gresl TA, Kemnitz JW, Weindruch R (2000) Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study. Exp Gerontol 35(9–10):1131–1149

    Article  PubMed  CAS  Google Scholar 

  • Raz N, Yang Y, Dahle CL, Land S (2011) Volume of white matter hyperintensities in healthy adults: Contribution of age, vascular risk factors, and inflammation-related genetic variants. Biochim Biophys Acta 1822(3):361–369

    PubMed  Google Scholar 

  • Reyes TM, Coe CL (1996) Interleukin-1 beta differentially affects interleukin-6 and soluble interleukin-6 receptor in the blood and central nervous system of the monkey. J Neuroimmunol 66(1-2):135–41

    Google Scholar 

  • Rosano C, Aizenstein HJ, Newman AB, Venkatraman V, Harris T, Ding J, Satterfield S, Yaffe K, For the Health ABC Study (2012) Neuroimaging differences between older adults with maintained versus declining cognition over a 10-year period. Neuroimage 62(1):307–313

    Article  PubMed  Google Scholar 

  • Saleem KS, Pauls JM, Augath M, Trinath T, Prause BA, Hashikawa T, Logothetis NK (2002) Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34(5):685–700

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann J, Pandya J (2006) Fiber pathways of the brain. Oxford University Press, New York

    Book  Google Scholar 

  • Semple BD, Kossmann T, Morganti-Kossmann MC (2010) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 30(3):459–473

    Article  PubMed  CAS  Google Scholar 

  • Sokolova A, Hill MD, Rahimi F, Warden LA, Halliday GM, Shepherd CE (2009) Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathol 19(3):392–398

    Article  PubMed  CAS  Google Scholar 

  • Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17(3):1429–1436

    Article  PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315

    Article  PubMed  CAS  Google Scholar 

  • Strober W, Fuss IJ (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140(6):1756–1767

    Article  PubMed  CAS  Google Scholar 

  • Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer’s disease. Nat Rev Immunol 6(5):404–416

    Article  PubMed  CAS  Google Scholar 

  • Whitwell JL, Avula R, Senjem ML, Kantarci K, Weigand SD, Samikoglu A, Edmonson HA, Vemuri P, Knopman DS, Boeve BF, Petersen RC, Josephs KA, Jack CR Jr (2010) Neurology 74(16):1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Willette AA, Lubach GR, Coe CL (2007) Environmental context differentially affects behavioral, leukocyte, cortisol, and interleukin-6 responses to low doses of endotoxin in the rhesus monkey. Brain Behav Immun 21(6):807–815

    Article  PubMed  CAS  Google Scholar 

  • Willette AA, Bendlin BB, McLaren DG, Canu E, Kastman EK, Kosmatka KJ, Xu G, Field AS, Alexander AL, Colman RJ, Weindruch RH, Coe CL, Johnson SC (2010) Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. NeuroImage 51(3):987–994

    Article  PubMed  CAS  Google Scholar 

  • Willette AA, Coe CL, Colman RJ, Bendlin BB, Kastman EK, Field AS, Alexander AL, Allison DB, Weindruch RH, Johnson SC (2011) Calorie restriction reduces psychological stress reactivity and its association with brain volume and microstructure in aged rhesus monkeys. Psychoneuroendocrinology 37(7):903–916

    Article  PubMed  Google Scholar 

  • Willette AA, Gallagher C, Bendlin BB, McLaren DG, Kastman EK, Canu E, Kosmatka KJ, Field AS, Alexander AL, Colman RJ, Voytko ML, Weindruch RH, Coe CL, Johnson SC (2012a) Homocysteine, neural atrophy, and the effect of caloric restriction in rhesus monkeys. Neurobiol Aging 33(4):670–680

    Article  PubMed  CAS  Google Scholar 

  • Willette AA, Bendlin BB, Colman RJ, Kastman EK, Field AS, Alexander AL, Sridharan A, Allison DB, Anderson R, Voytko ML, Kemnitz JW, Weindruch RH, Johnson SC (2012b) Calorie Restriction Reduces the Influence of Glucoregulatory Dysfunction on Regional Brain Volume in Aged Rhesus Monkeys. Diabetes 61(5):1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Finch CE, Cohen HJ (2002) Cytokines and cognition—the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 50(12):2041–2056

    Article  PubMed  Google Scholar 

  • Xiong H, Boyle J, Winkelbauer M, Gorantla S, Zheng J, Ghorpade A, Persidsky Y, Carlson KA, Gendelman HE (2003) Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J Neurosci Res 71(4):600–607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We give thanks for the assistance of R. Fisher and the Waisman Center for Brain Imaging. This study was supported in part by the National Institutes of Health RR000167, AG011915, AG000213, and AG043125. The study was also supported with resources and facilities at the W.S. Middleton Memorial Veterans Hospital. This research was conducted in part at a facility constructed with support from Research Facilities Improvement Program grant numbers RR15459-01 and RR020141-01. CLC receives partial salary support from several NIH awards (AG027343, AG20166, HD057064, AI067518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Johnson.

About this article

Cite this article

Willette, A.A., Coe, C.L., Birdsill, A.C. et al. Interleukin-8 and interleukin-10, brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques. AGE 35, 2215–2227 (2013). https://doi.org/10.1007/s11357-013-9518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9518-y

Keywords

Navigation