Skip to main content

Advertisement

Log in

Persistence of the effect of birth size on dysglycaemia and type 2 diabetes in old age: AGES-Reykjavik Study

  • Published:
AGE Aims and scope Submit manuscript

Abstract

We studied the effect of birth size on glucose and insulin metabolism among old non-diabetic individuals. We also explored the combined effect of birth size and midlife body mass index (BMI) on type 2 diabetes in old age. Our study comprised 1,682 Icelanders whose birth records included anthropometrical data. The same individuals had participated in the prospective population-based Reykjavik Study, where BMI was assessed at a mean age of 47 years, and in the AGES-Reykjavik Study during 2002 to 2006, where fasting glucose, insulin and HbA1c were measured and homeostasis model assessment for the degree of insulin resistance (HOMA-IR) calculated at a mean age of 75.5 years. Type 2 diabetes was determined as having a history of diabetes, using glucose-modifying medication or fasting glucose of >7.0 mmol/l. Of the participants, 249 had prevalent type 2 diabetes in old age. Lower birth weight and body length were associated with higher fasting glucose, insulin, HOMA-IR and HbA1c among old non-diabetic individuals. Higher birth weight and ponderal index at birth decreased the risk for type 2 diabetes in old age, odds ratio (OR), 0.61 [95 % confidence interval (CI), 0.48–0.79] and 0.96 (95 % CI, 0.92–1.00), respectively. Compared with those with high birth weight and low BMI in midlife, the odds of diabetes was almost five-fold for individuals with low birth weight and high BMI (OR, 4.93; 95 % CI, 2.14–11.37). Excessive weight gain in adulthood might be particularly detrimental to the health of old individuals with low birth weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atladottir H, Thorsdottir I (2000) Energy intake and growth of infants in Iceland—a population with high frequency of breast-feeding and high birth weight. Eur J Clin Nutr 54:695–701

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311:171–174

    Article  PubMed  CAS  Google Scholar 

  • Bateson P, Barker DJ, Clutton-Brock T, Deb D, D'Udine B, Foley RA et al (2004) Developmental plasticity and human health. Nature 430:419–421

    Article  PubMed  CAS  Google Scholar 

  • Bhargava SK, Sachdev HS, Fall CH, Osmond C, Lakshmy R, Barker DJ et al (2004) Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 350:865–875

    Article  PubMed  CAS  Google Scholar 

  • Birgisdottir BE, Gunnarsdottir I, Thorsdottir I, Gudnason V, Benediktsson R (2002) Size at birth and glucose intolerance in a relatively genetically homogeneous, high-birth weight population. Am J Clin Nutr 76:399–403

    PubMed  CAS  Google Scholar 

  • Chan JCN, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH et al (2009) Diabetes in Asia. Epidemiology, risk factors, and pathophysiology. JAMA 301:2129–2140

    Article  PubMed  CAS  Google Scholar 

  • Danaei G, Singh GM, Cowan MJ, Cowan MJ, Paciorek CJ, Lin JK et al (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378:31–40

    Article  PubMed  CAS  Google Scholar 

  • Eriksson JG, Forsen TJ, Osmond C, Barker DJP (2003) Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care 26:3006–3010

    Article  PubMed  Google Scholar 

  • Eriksson M, Wallander MA, Krakau I, Wedel H, Svärdsudd K (2004) Birth weight and cardiovascular risk factors in a cohort followed until 80 years of age: the study of men born in 1913. J Intern Med 255:236–246

    Article  PubMed  CAS  Google Scholar 

  • Forsen T, Eriksson JG, Tuomilehti J, Reunanen A, Osmond C, Barker D (2000) The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 133:176–182

    Article  PubMed  CAS  Google Scholar 

  • Garofano A, Czernichow P, Breat B (1997) Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia 40:1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Gunnarsdottir I, Birgisdottir BE, Benediktsson R, Gudnason V, Thorsdottir I (2002) Relationship between size at birth and hypertension in a genetically homogeneous population of high birth weight. J Hypertens 20:623–628

    Article  PubMed  CAS  Google Scholar 

  • Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  PubMed  CAS  Google Scholar 

  • Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303:1019–1022

    Article  PubMed  CAS  Google Scholar 

  • Harding JE (2001) The nutritional basis of the fetal origins of adult disease. Int J Epidemiol 30:15–23

    Article  PubMed  CAS  Google Scholar 

  • Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonasson PV, Sigurdsson G et al (2007) Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am J Epidemiol 165:1076–1087

    Article  PubMed  Google Scholar 

  • Hattersley AT, Tooke JE (1999) The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 353:1789–1792

    Article  PubMed  CAS  Google Scholar 

  • Imbault P, Prins JB, Stolic M, Russell AW, O'Moore-Sullivan T, Despres JP et al (2003) Aging per se does not influence glucose homeostasis. Diabetes Care 26:480–484

    Article  Google Scholar 

  • Kajantie E, Osmond C, Barker DJ, Forsen T, Phillips DI, Eriksson JG (2005) Size at birth as a predictor of mortality in adulthood: a follow-up of 350 000 person-years. Int J Epidemiol 34:655–663

    Article  PubMed  Google Scholar 

  • Lapidus L, Andersson SW, Bengtsson C, Björkelund C, Rossander-Hulthen L, Lissner L (2008) Weight and length at birth and their relationship to diabetes incidence and all-cause mortality—a 32-year follow-up of the population study of women in Gothenburg, Sweden. Prim Care Diabetes 2:127–133

    Article  PubMed  Google Scholar 

  • Lawlor DA, Davey Smith G, Clark H, Leon DA (2006) The associations of birthweight, gestational age and childhood BMI with type 2 diabetes: findings from the Aberdeen Children of the 1950s cohort. Diabetologia 49:2614–2617

    Article  PubMed  CAS  Google Scholar 

  • Lindström J, Ilanne-Parikka P, Peltonen M, Aunola S, Eriksson JG, Hemiö K et al (2006) Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study. Lancet 368:1673–1679

    Article  PubMed  Google Scholar 

  • Lithell HO, McKeigue PM, Berglund L, Mohsen R, Lithell UB, Leon DA (1996) Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 312:406–410

    Article  PubMed  CAS  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  • Olafsdottir E, Aspelund T, Sigudsson G, Thorsson B, Benediktsson R, Harris TB et al (2009) Unfavorable risk factors for type 2 diabetes mellitus are already apparent more than a decade before onset in a population-based study of older persons: from the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik). Eur J Epidemiol 24:307–314

    Article  PubMed  CAS  Google Scholar 

  • Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL et al (2003) Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 177:235–241

    Article  PubMed  CAS  Google Scholar 

  • Poulsen P, Vaag AA, Kyvik KO, Moller-Jensen D, Beck-Nielsen H (1997) Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 40:439–446

    Article  PubMed  CAS  Google Scholar 

  • Preis SR, Hwang SJ, Coady S (2009) Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 119:1728–1735

    Article  PubMed  Google Scholar 

  • Ravelli ACJ, van der Meulen JHP, Michels RPJ, Osmond C, Barker DJP, Hales CN et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson E, Thorgeirsson G, Sigvaldason H, Sigfusson N (1995) Unrecognized myocardial infarction: epidemiology, clinical characteristics, and the prognostic role of angina pectoris. The Reykjavik Study. Ann Intern Med 122:96–122

    Article  PubMed  CAS  Google Scholar 

  • Szoke E, Shrayyef MZ, Messing S, Woerle HJ, van Haeften TW, Meyer C et al (2008) Effect of aging on glucose homeostasis. Diabetes Care 31:539–543

    Article  PubMed  CAS  Google Scholar 

  • Tian JY, Cheng Q, Song XM, Li G, Jiang GX, Gu YY et al (2006) Birth weight and risk of type 2 diabetes, abdominal obesity and hypertension among Chinese adults. Eur J Endocrinol 155:601–607

    Article  PubMed  CAS  Google Scholar 

  • Vilbergsson S, Sigurdsson G, Sigvaldsson H, Hreidarsson AB, Sigfusson N (1997) Prevalence and incidence of NIDDM in Iceland: evidence for stable incidence among males and females 1967–1991—the Reykjavik Study. Diabet Med 14:491–498

    Article  PubMed  CAS  Google Scholar 

  • Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S et al (2008) Birth weight and risk of type 2 diabetes. A systematic review. JAMA 300:2886–2897

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The AGES-Reykjavik Study was supported by a grant from the National Institutes of Health (N01-AG-1-2100), National Institute on Aging Intramural Research Program, Hjartavernd (the Icelandic Heart Association) and the Althingi (the Icelandic Parliament). The Reyjavik Study was funded by the Icelandic Heart Association. M.B.vB. was supported by grants from the Academy of Finland; University of Jyväskylä; Yrjö Jahnsson Foundation and Fulbright Center, the Finland–US Educational Exchange Commission. I.T. was supported by grants from The Icelandic Research Council and Research Fund of the University of Iceland. The Gerontology Research Center is a joint effort between the University of Jyväskylä and the University of Tampere, Finland.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Mikaela B. von Bonsdorff.

About this article

Cite this article

von Bonsdorff, M.B., Muller, M., Aspelund, T. et al. Persistence of the effect of birth size on dysglycaemia and type 2 diabetes in old age: AGES-Reykjavik Study. AGE 35, 1401–1409 (2013). https://doi.org/10.1007/s11357-012-9427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9427-5

Keywords

Navigation