Skip to main content
Log in

The use of honeybees reared in a thermostatic chamber for aging studies

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Honeybees (Apis mellifera) are an attractive model system for studying aging. However, the aging level of worker honeybees from the field hive is in dispute. To eliminate the influence of task performance and confirm the relationship between chronological age and aging, we reared newly emerged workers in a thermostat at 34°C throughout their lives. A survivorship curve was obtained, indicating that workers can be reared away from the field hive, and the only difference between these workers is age. To confirm that these workers can be used for aging studies, we assayed age-related molecules in the trophocytes and fat cells of young and old workers. Old workers expressed more senescence-associated β-galactosidase, lipofuscin granules, lipid peroxidation, and protein oxidation than young workers. Furthermore, cellular energy metabolism molecules were also assayed. Old workers exhibited less ATP concentration, β-oxidation, and microtubule-associated protein light chain 3 (LC3) than young workers. These results demonstrate that honeybees reared in a thermostatic chamber can be used for aging studies and cellular energy metabolism in the trophocytes and fat cells of workers changes with advancing age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida H, Magalhães MC, Magalhães MM (1998) Age-related changes in lipid peroxidation products in rat adrenal gland. Age 21:119–121

    Article  CAS  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Couteur DL, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  • Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell functions. Free Radic Biol Med 33:611–619

    Article  PubMed  CAS  Google Scholar 

  • Collins AM, Williams V, Evans JD (2004) Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Mol Biol 13:141–146

    Article  PubMed  CAS  Google Scholar 

  • Cordiner S, Egginton S (1997) Effects of seasonal temperature acclimatization on muscle metabolism in rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 16:333–343

    Article  CAS  Google Scholar 

  • Corona M, Hughes KA, Weaver DB, Robinson GE (2005) Gene expression patterns associated with queen honey bee longevity. Mech Ageing Dev 6:1230–1238

    Article  Google Scholar 

  • Cuervo AM, Bergamini E, Brunk UT, Drӧge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    Article  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 86:421–431

    Article  Google Scholar 

  • Genade T, Benedetti M, Terzibasi E, Roncaglia P, Valenzano DR, Cattaneo A, Cellerino A (2005) Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 4:223–233

    Article  PubMed  CAS  Google Scholar 

  • Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1997) Link between aging and the nucleolus. Genes Dev 11:2449–2455

    Article  PubMed  CAS  Google Scholar 

  • Herrera M, Jagadeeswaran P (2004) Annual fish as a genetic model for aging. J Gerontol A Biol Sci Med Sci 59:101–107

    Article  PubMed  Google Scholar 

  • Hsieh YS, Hsu CY (2011) Honeybee trophocytes and fat cells as target cells for cellular senescence studies. Exp Gerontol 46:233–240

    Article  PubMed  CAS  Google Scholar 

  • Hsu CY, Chiu YC (2009) Ambient temperature influences aging in an annual fish (Nothobranchius rachovii). Aging Cell 8:726–737

    Article  PubMed  CAS  Google Scholar 

  • Hsu CY, Ko FY, Li CW, Fann K, Lue JT (2007) Magnetoreception system in honeybees (Apis mellifera). PLoS One 2(4):e395. doi:10.1371/journal.pone.0000395

    Article  PubMed  Google Scholar 

  • Hsu CY, Chiu YC, Hsu WL, Chan YP (2008) Age-related markers assayed at different developmental stages of the annual fish Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 63A:1267–1276

    Article  CAS  Google Scholar 

  • Jemielity S, Keller L (2007) Aging: a young mind in old bees. Curr Biol 17:R294–R295

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki M, Karim MR, Carpi A, Miotto G (2006) Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med 27:426–443

    Article  PubMed  CAS  Google Scholar 

  • Kelley D, He J, Menshikova E, Ritov V (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  PubMed  CAS  Google Scholar 

  • Kishi S, Uchiyama J, Baughman A, Goto T, Lin M, Tsai S (2003) The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp Gerontol 38:777–786

    Article  PubMed  Google Scholar 

  • Kostyak JC, Kris-Etherton P, Bagshaw D, DeLany JP, Farrell PA (2007) Relative fat oxidation is higher in children than adults. Nutr J 6:19

    Article  PubMed  Google Scholar 

  • Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated β-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622

    PubMed  CAS  Google Scholar 

  • Levadoux E, Morio B, Montaurier C, Puissant V, Boirie Y, Fellmann N, Picard B, Rousset P, Beaufrere B, Ritz P (2001) Reduced whole-body fat oxidation in women and in the elderly. Int J Obes Relat Metab Disord 25:39–44

    Article  PubMed  CAS  Google Scholar 

  • Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6:439–448

    Article  PubMed  CAS  Google Scholar 

  • McMullen CA, Ferry AL, Gamboa JL, Andrade FH, Dupont-Versteegden EE (2009) Age-related changes of cell death pathways in rat extraocular muscle. Exp Gerontol 44:420–425

    Article  PubMed  CAS  Google Scholar 

  • Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchirt J, Senin U, Beal MF (1999) Age-dependent increase in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308

    Article  PubMed  CAS  Google Scholar 

  • Nakano M, Oenzil F, Mizuno T, Gotoh S (1995) Age-related changes in the lipofuscin accumulation of brain and heart. Gerontology 41:69–79

    Article  PubMed  CAS  Google Scholar 

  • Neukirch A (1982) Dependence of the life span of the honeybee (Apis mellifera) upon flight performance and energy consumption. J Comp Physiol 146:35–40

    CAS  Google Scholar 

  • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  PubMed  CAS  Google Scholar 

  • Remolina SC, Hafez DM, Robinson GE, Hughes KA (2007) Senescence in the worker honey bee Apis mellifera. J Insect Physiol 53:1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Rueppell O, Bachelier C, Fondrk MK, Page RE (2007a) Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp Gerontol 42:1020–1032

    Article  PubMed  Google Scholar 

  • Rueppell O, Christine S, Mulcrone C, Groves L (2007b) Aging without functional senescence in honey bee workers. Curr Biol 17:R274–R275

    Article  PubMed  CAS  Google Scholar 

  • Schippers MP, Dukas R, Smith RW, Wang J, Smolen K, McClelland GB (2006) Lifetime performance in foraging honeybees: behaviour and physiology. J Exp Biol 209:3828–3836

    Article  PubMed  Google Scholar 

  • Schippers MP, Dukas R, McClelland GB (2010) Lifetime- and caste-specific changes in flight metabolic rate and muscle biochemistry of honeybees, Apis mellifera. J Comp Physiol B 180:45–55

    Article  PubMed  CAS  Google Scholar 

  • Seehuus SC, Krekling T, Amdam GV (2006a) Cellular senescence in honey bee brain is largely independent of chronological age. Exp Gerontol 41:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV (2006b) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A 103:962–967

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal S, Dubey A, Orr WC (1993) Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci U S A 90:7255–7259

    Article  PubMed  CAS  Google Scholar 

  • Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, Oka T, Tamai T, Oyabu J, Murakawa T, Nishida K, Shimizu T, Hori M, Komuro I, Shirasawa T, Mizushima N, Otsu K (2010) Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6:600–606

    Article  PubMed  CAS  Google Scholar 

  • Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell Biol 36:1400–1404

    Article  PubMed  CAS  Google Scholar 

  • Thibeault M, Blier PU, Guderley H (1997) Seasonal variation of muscle metabolism organization in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 16:139–155

    Article  Google Scholar 

  • van der Loo B, Fenton MJ, Erusalimsky JD (1998) Cytochemical detection of a senescence-associated b-galactosidase in endothelial and smooth muscle cells from human and rabbit blood vessels. Exp Cell Res 241:309–315

    Article  PubMed  Google Scholar 

  • Weirich GF, Collins AM, Williams VP (2002) Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33:3–14

    Article  CAS  Google Scholar 

  • Welis-Knecht MC, Huggins TG, Dyer G, Thorpe SR, Baynes JW (1993) Oxidized amino acids in lens protein with age. J Biol Chem 268:12348–12352

    Google Scholar 

  • Williams JB, Roberts SP, Elekonich MM (2008) Age and natural metabolically intensive behavior affect oxidative stress and antioxidant mechanisms. Exp Gerontol 43:538–549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CMRPD 170361 grant from Chang Gung Memorial Hospital, Taiwan. We thank Scott C. Schuyler for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Yuan Hsu.

About this article

Cite this article

Hsu, CY., Chan, YP. The use of honeybees reared in a thermostatic chamber for aging studies. AGE 35, 149–158 (2013). https://doi.org/10.1007/s11357-011-9344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9344-z

Keywords

Navigation