Skip to main content

Advertisement

Log in

Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium nanoparticles can represent a risk in both industrial and environmental settings, but there is little knowledge on the impacts of their inhalation, especially concerning longer-term exposures. In this study, mice were exposed to cadmium oxide (CdO) nanoparticles in whole body inhalation chambers for 4 to 72 h in acute and 1 to 13 weeks (24 h/day, 7 days/week) in chronic exposure to investigate the dynamics of nanoparticle uptake and effects. In the acute experiment, mice were exposed to 2.95 × 106 particles/cm3 (31.7 μg CdO/m3). The same concentration and a lower one (1.18 × 106 particles/cm3, 12.7 μg CdO/m3) were used for the chronic exposure. Transmission electron microscopy documented distribution of nanoparticles into all studied organs. Major portion of nanoparticles was retained in the lung, but longer exposure led to a greater relative redistribution into secondary organs, namely the kidney, and also the liver and spleen. Accumulation of Cd in the lung and liver occurred already after 24 h and in the brain, kidney, and spleen after 72 h of exposure, and a further increase of Cd levels was observed throughout the chronic exposure. There were significant differences in both Cd accumulation and effects between the two exposure doses. Lung weight in the higher exposure group increased up to 2-fold compared to the control. Histological analyses showed dose-dependent alterations in lung and liver morphology and damage to their tissue. Modulation of oxidative stress parameters including glutathione levels and increased lipid peroxidation occurred mainly after the greater chronic exposure. The results emphasize risk of longer-term inhalation of cadmium nanoparticles, since adverse effects occurring after shorter exposures gradually progressed with a longer exposure duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99:12617–12621

    Article  CAS  Google Scholar 

  • Alessandrini F, Ziesenis A, Takenaka S, Karg E, Heyder J, Ring J, Behrendt H (2003) Effects of inhaled CdO particles on the sphingolipid synthesis of rat lungs. Inhal Toxicol 15:343–356

    Article  CAS  Google Scholar 

  • Bastos AS, Loureiro APDM, de Oliveira TF, Corbi SCT, Caminaga RMS, Júnior CR, Orrico SRP (2012) Quantitation of malondialdehyde in gingival crevicular fluid by a high-performance liquid chromatography-based method. Anal Biochem 423:141–146

    Article  CAS  Google Scholar 

  • Bernard A, Buchet JP, Roels H, Masson P, Lauwerys R (1979) Renal excretion of proteins and enzymes in workers exposed to cadmium. Eur J Clin Investig 9:11–22

    Article  CAS  Google Scholar 

  • Bláhová L, Kohoutek J, Lebedová J, Bláha L, Večeřa Z, Buchtová M, Míšek I, Hilscherová K (2014) Simultaneous determination of reduced and oxidized glutathione in tissues by a novel liquid chromatography-mass spectrometry method: application in an inhalation study of Cd nanoparticles. Anal Bioanal Chem 406:5867–5876

    Article  Google Scholar 

  • Blum JL, Rosenblum LK, Grunig G, Beasley MB, Xiong JQ, Zelinkoff JT (2014) Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal Toxicol 26:48–58

    Article  CAS  Google Scholar 

  • Blum JL, Xiong JQ, Hoffman C, Zelikoff JT (2012) Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci 126:478–486

    Article  CAS  Google Scholar 

  • Buckley BJ, Bassett DJ (1987) Glutathione redox status of control and cadmium oxide-exposed rat lungs during oxidant stress. J Toxicol Environ Health 22:287–299

    Article  CAS  Google Scholar 

  • Campos-Ramos A, Aragón-Piña A, Galindo-Estrada I, Querol X, Alastuey A (2009) Characterization of atmospheric aerosols by SEM in a rural area in the western part of México and its relation with different pollution sources. Atmos Environ 43:6159–6167

    Article  CAS  Google Scholar 

  • Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28:1300–1303

    Article  CAS  Google Scholar 

  • Dong C (2015) Protective effect of proanthocyanidins in cadmium induced neurotoxicity in mice. Drug. Research 65(10):555–560

    CAS  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114:1172–1178

    Article  CAS  Google Scholar 

  • Elinder C, Edling C, Lindberg E, Kagedal B, Vesterberg O (1985) Assessment of renal function in workers previously exposed to cadmium. Br J Ind Med 42:754–760

    CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hopkins LE, Patchin ES, Chiu P-L, Brandenberger C, Smiley-Jewell S, Pinkerton KE (2014) Nose-to-brain transport of aerosolized quantum dots following acute exposure. Nanotoxicology 18:1199–1216

    Google Scholar 

  • Jain S, Rachamalla M, Kulkarni A, Kaur J, Tikoo K (2013) Pulmonary fibrotic response to inhalation of ZnO nanoparticles and toluene co-exposure through directed flow nose only exposure chamber. Inhal Toxicol 25:703–713

    Article  CAS  Google Scholar 

  • Kirschvink N, Martin N, Fievez L, Smith N, Marlin D, Gustin P (2006) Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema. Free Radic Res 40:241–250

    Article  CAS  Google Scholar 

  • Krug HF (2014) Nanosafety research—are we on the right track? Angew Chem Int Ed Engl 53:12304–12319

    CAS  Google Scholar 

  • Liang G, Pu Y, Yin L, Liu R, Ye B, Su Y, Li Y (2009) Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health A 72:740–745

    Article  CAS  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma-Hock L, Brill S, Wohlleben W, Farias PMA, Chaves CR, Tenório DPLA, Fontes A, Santos BS, Landsiedel R, Strauss V, Treumann S, van Ravenzwaay B (2012) Short term inhalation toxicity of a liquid aerosol of CdS/Cd(OH)2 core shell quantum dots in male Wistar rats. Toxicol Lett 208:115–124

    Article  CAS  Google Scholar 

  • Mason H, Davison A, Wright A, Guthrie C, Fayers P, Venables K, Smith N, Chettle D, Franklin D, Scott M, Holden H, Gompertz D, Newmantaylor A (1988) Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers. Br J Ind Med 45:793–802

    CAS  Google Scholar 

  • Mitsumori K, Shibutani M, Sato S, Onodera H, Nakagawa J, Hayashi Y, Ando M (1998) Relationship between the development of hepato-renal toxicity and cadmium accumulation in rats given minimum to large amounts of cadmium chloride in the long-term: preliminary study. Arch Toxicol 72:545–552

    Article  CAS  Google Scholar 

  • Oravisjärvi K, Timonen KL, Wiikinkoski T, Ruuskanen AR, Heinänen K, Ruuskanen J (2003) Source contributions to PM2.5 particles in the urban air of a town situated close to a steel works. Atmos Environ 37:1013–1022

    Article  Google Scholar 

  • Oszlánczi G, Papp A, Szabó A, Nagymajtényi L, Sápi A, Kónya Z, Paulik E, Vezér T (2011) Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal Toxicol 23:173–181

    Article  Google Scholar 

  • Papp A, Oszlánczi G, Horváth E, Paulik E, Kozma G, Sápi A, Kónya Z, Szabó A (2012) Consequences of subacute intratracheal exposure of rats to cadmium oxide nanoparticles: electrophysiological and toxicological effects. Toxicol Ind Health 28:933–941

    Article  CAS  Google Scholar 

  • Papp T, Schiffmann D, Weiss D, Castranova V, Vallyathan V, Rahman Q (2008) Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27

    Article  CAS  Google Scholar 

  • Roels H, Lauwerys R, Buchet J, Bernard A, Vos A, Oversteyns M (1989) Health significance of cadmium induced renal dysfunction: a five year follow up. Br J Ind Med 46:755–764

    CAS  Google Scholar 

  • Sadauskas E, Jacobsen NR, Danscher G, Stoltenberg M, Vogel U, Larsen A, Kreyling W, Wallin H (2009) Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem. Cent J 3

  • Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res Int 22:4122–4143

    Article  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  CAS  Google Scholar 

  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung Cell. Mol Physiol 295:L552–L565

    Article  CAS  Google Scholar 

  • Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223

    CAS  Google Scholar 

  • Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy PB, Reddy PN (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 31:1113–1131

    Article  CAS  Google Scholar 

  • Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN (2011) Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 205:105–115

    Article  CAS  Google Scholar 

  • Srivastava AK, Pandey S, Sood KN, Halder SK, Kishore R (2008) Novel growth morphologies of nano- and micro-structured cadmium oxide. Mater Lett 62:727–730

    Article  CAS  Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, IJ Y (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461

    Article  CAS  Google Scholar 

  • Takenaka S, Karg E, Kreyling WG, Lentner B, Schulz H, Ziesenis A, Schramel P, Heyder J (2004) Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal Toxicol 16(Suppl 1):83–92

    Article  CAS  Google Scholar 

  • Večeřa Z, Mikuška P, Moravec P, Smolík J (2011) Unique exposure system for the whole body inhalation experiments with small animals. TANGER Ltd NANOCON 2011:652–654

    Google Scholar 

  • Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008) Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80

    Article  CAS  Google Scholar 

  • Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Shu Y, Zhao X (2014) Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats. Food Chem Toxicol 65:260–268

    Article  CAS  Google Scholar 

  • Zhao Y, Chen L, Gao S, Toselli P, Stone P, Li W (2010) The critical role of the cellular thiol homeostasis in cadmium perturbation of the lung extracellular matrix. Toxicology 267:60–69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Pavel Moravec from Institute of Chemical Process Fundamentals, CAS, v.v.i., Prague, Czech Republic for helping with the generation of the CdONPs and SMPS measurement with nanoDMA. The work was supported by the Czech Science Foundation grant No. P503/11/2315 and P503/12/G147 and by project LO1214 funded by the National Sustainability Programme of the Czech Republic. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hilscherová.

Ethics declarations

The experiments were performed in accordance with the ethical approval of the Institute of Animal Physiology and Genetics (no. 081/2010).

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedová, J., Bláhová, L., Večeřa, Z. et al. Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice. Environ Sci Pollut Res 23, 24047–24060 (2016). https://doi.org/10.1007/s11356-016-7600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7600-6

Keywords

Navigation