Skip to main content

Advertisement

Log in

Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia

Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a “core” Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barberan A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    Article  CAS  Google Scholar 

  • Bayen S (2012) Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environ Int 48:84–101

    Article  CAS  Google Scholar 

  • Ben Said O, Goni-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R (2008) Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 104:987–997

    Article  CAS  Google Scholar 

  • Ben Said O, Goni-Urriza M, El Bour M, Aissa P, Duran R (2010) Bacterial community structure of sediments of the Bizerte lagoon (Tunisia), a southern Mediterranean coastal anthropized lagoon. Microb Ecol 59:445–456

    Article  Google Scholar 

  • Bernhard AE, Colbert D, McManus J, Field KG (2005) Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiol Ecol 52:115–128

    Article  CAS  Google Scholar 

  • Bertazzo M, Montero-Calasanz MD, Martinez-Garcia M, Sproer C, Schumann P, Kroppenstedt RM, Stackebrandt E, Klenk HP, Fiedler HP (2014) Geodermatophilus brasiliensis sp nov., isolated from Brazilian soil. Int J Syst Evol Microbiol 64:2841–2848

    Article  CAS  Google Scholar 

  • Bertin PN et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747

    Article  CAS  Google Scholar 

  • Bordenave S, Fourcans A, Blanchard S, Goni MS, Caumette P, Duran R (2004) Structure and functional analyses of bacterial communities changes in microbial mats following petroleum exposure. Ophelia 58:195–203

    Article  Google Scholar 

  • Bordenave S, Goni-Urriza MS, Caumette P, Duran R (2007) Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl Environ Microbiol 73:6089–6097

    Article  CAS  Google Scholar 

  • Buchanan JB, Kain JM (1971) Measurement of the physical and chemical environment. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos, IBP handbook no. 16. Blackwell Scientific, Oxford, pp 30–58

  • Cerniglia CE (2003) Recent advances in the biodegradation of polycyclic aromatic hydrocarbons by Mycobacterium species. In: Sasek V, Glaser JA, Baveye P (eds) Utilization of bioremediation to reduce soil contamination: problems and solutions. NATO Science Series IV Earth and Environmental Sciences, pp 51–73

  • Chandram D, Ramu S, Nataraja R (1972) Cellulolytic activity of marine Streptomycetes. Curr Sci 41:245–248

    Google Scholar 

  • Chen SX, Shao ZZ (2009) Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 13:39–48

    Article  CAS  Google Scholar 

  • Chronopoulou PM, Fahy A, Coulon F, Paisse S, Goni-Urriza MS, Peperzak L, Alvarez LA, McKew BA, Lawson T, Timmis KN, Duran R, Underwood GJC, McGenity TJ (2013) Impact of a simulated oil spill on benthic phototrophs and nitrogen-fixing bacteria in mudflat mesocosms. Environ Microbiol 15:242–252

    Article  CAS  Google Scholar 

  • Chung WK, King GM (1999) Biogeochemical transformations and potential polyaromatic hydrocarbon degradation in macrofaunal burrow sediments. Aquat Microb Ecol 19:285–295

    Article  Google Scholar 

  • Coulon F, Chronopoulou P-M, Fahy A, Paisse S, Goni-Urriza M, Peperzak L, Alvarez LA, McKew BA, Brussaard CPD, Underwood GJC, Timmis KN, Duran R, McGenity TJ (2012) Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 78:3638–3648

    Article  CAS  Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • Das S, Ward LR, Burke C (2008) Prospects of using marine Actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 81:419–429

    Article  CAS  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  CAS  Google Scholar 

  • Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160:1–9

    Article  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  Google Scholar 

  • Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008a) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  CAS  Google Scholar 

  • Dowd SF, Sun Y, Wolcott RD, Domingo A, Carroll JA (2008b) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog Dis 5:459–472

    Article  CAS  Google Scholar 

  • Dowd SE, Hanson JD, Rees E, Wolcott RD, Zischau AM, Sun Y, White J, Smith DM, Kennedy J, Jones CE (2011) Survey of fungi and yeast in polymicrobial infections in chronic wounds. J Wound Care 20:40–47

    Article  CAS  Google Scholar 

  • Duran R, Menuet V, Monperrus M, Guyoneaud R, Goni MS, Tessier E, Amouroux D, Donard OFX, Caumette P (2003) Monitoring bacterial communities adaptation to mercury contamination in estuarine sediments maintained in slurries. J Phys IV 107:393–396

    CAS  Google Scholar 

  • Duran R, Ranchou-Peyruse M, Menuet V, Monperrus M, Bareille G, Goni MS, Salvado JC, Amouroux D, Guyoneaud R, Donard OFX, Caumette P (2008) Mercury methylation by a microbial community from sediments of the Adour Estuary (Bay of Biscay, France). Environ Pollut 156:951–958

    Article  CAS  Google Scholar 

  • Durmiši E, Vujaklija D, Bielen A, Duran R, Hamer B (2013) Physicochemical and ecotoxicological evaluation of the Rovinj coastal area sediments, Northern Adriatic, Croatia. Rapp Comm Int Mer Médit 40:330

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • EEA (1999) State and pressures of the marine and coastal Mediterranean environment. Environmental assessment report, European Environment Agency, Copenhagen, Denmark, 44 pp

  • Falkinham JO, George KL, Parker BC, Gruft H (1984) invitro susceptibility of human and environmental isolates of Mycobacterium-avium, Mycobacterium-intracellulare, and Mycobacterium-scrofulaceum to heavy-metal salts and oxyanions. Antimicrob Agents Chemother 25:137–139

    Article  CAS  Google Scholar 

  • Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. Plos Comput Biol 8:e1002606

  • Feng T, Lin H, Tang J, Feng Y (2014) Characterization of polycyclic aromatic hydrocarbons degradation and arsenate reduction by a versatile Pseudomonas isolate. Int Biodeterior Biodegrad 90:79–87

    Article  CAS  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Anton Leeuw Int J Gen Mole Microbiol 87:37–42

    Article  CAS  Google Scholar 

  • Fourcans A, Sole A, Diestra E, Ranchou-Peyruse A, Esteve I, Caumette P, Duran R (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol Ecol 57:367–377

    Article  CAS  Google Scholar 

  • Fourcans A, Ranchou-Peyruse A, Caumette P, Duran R (2008) Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat. Microb Ecol 56:90–100

    Article  CAS  Google Scholar 

  • Fuhrman JA, Steele JA (2008) Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat Microb Ecol 53:69–81

    Article  Google Scholar 

  • Gallego S, Vila J, Tauler M, Maria Nieto J, Breugelmans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25:543–556

    Article  CAS  Google Scholar 

  • Giloteaux L, Goni-Urriza M, Duran R (2010) Nested PCR and new primers for analysis of sulfate-reducing bacteria in low-cell-biomass environments. Appl Environ Microbiol 76:2856–2865

    Article  CAS  Google Scholar 

  • Giloteaux L, Duran R, Casiot C, Bruneel O, Elbaz-Poulichet F, Goni-Urriza M (2013) Three-year survey of sulfate-reducing bacteria community structure in Carnoules acid mine drainage (France), highly contaminated by arsenic. FEMS Microbiol Ecol 83:724–737

    Article  CAS  Google Scholar 

  • Gonzalez-Toril E, Santofimia E, Lopez-Pamo E, Omoregie EO, Amils R, Aguilera A (2013) Microbial ecology in extreme acidic pit lakes from the Iberian Pyrite Belt (SW Spain). In: Guiliani N et al (eds) Integration of scientific and industrial knowledge on biohydrometallurgy. Advanced Materials Research, pp 23–27

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  Google Scholar 

  • Guo C, Ke L, Dang Z, Tam NF (2011) Temporal changes in Sphingomonas and Mycobacterium populations in mangrove sediments contaminated with different concentrations of polycyclic aromatic hydrocarbons (PAHs). Mar Pollut Bull 62:133–139

    Article  CAS  Google Scholar 

  • Haefner B (2003) Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8:536–544

    Article  CAS  Google Scholar 

  • Hardoim CCP, Esteves AIS, Pires FR, Goncalves JMS, Cox CJ, Xavier JR, Costa R (2012) Phylogenetically and spatially close marine sponges harbour divergent bacterial communities. Plos One 7:e53029

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • He J, Xu Y, Sahu MK, Tian X-P, Nie G-X, Xie Q, Zhang S, Sivakumar K, Li W-J (2012) Actinomadura sediminis sp nov., a marine actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 62:1110–1116

    Article  CAS  Google Scholar 

  • Hedrick DB, Peacock AD, Tita G, Fleeger JW, Carman KR, White DC (2009) Effects of diesel and interactions with copper and other metals in an estuarine sediment microbial community. Environ Toxicol Chem 28:2289–2297

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monograph 75:3–35

    Article  Google Scholar 

  • Ikenaga M, Guevara R, Dean AL, Pisani C, Boyer JN (2010) Changes in community structure of sediment bacteria along the Florida coastal everglades marsh–mangrove–seagrass salinity gradient. Microb Ecol 59:284–295

    Article  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Anton Leeuw Int J Gen Mole Microbiol 87:43–48

    Article  CAS  Google Scholar 

  • Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752

    Article  CAS  Google Scholar 

  • Kaempfer P, Schaefer J, Lodders N, Martin K (2011) Jiangella muralis sp. nov., from an indoor environment. Int J Syst Evol Microbiol 61:128–131

    Article  CAS  Google Scholar 

  • Kong YH, Nielsen JL, Nielsen PH (2005) Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 71:4076–4085

    Article  CAS  Google Scholar 

  • Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A (2010) Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov. Int J Syst Evol Microbiol 60:2314–2319

    Article  CAS  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  Google Scholar 

  • Lee SD (2007) Marmoricola aequoreus sp nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 57:1391–1395

    Article  Google Scholar 

  • Lee SD (2008) Jiangella alkaliphila sp nov., an actinobacterium isolated from a cave. Int J Syst Evol Microbiol 58:1176–1179

    Article  CAS  Google Scholar 

  • Lee DW, Lee SD (2010) Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 60:2135–2139

    Article  CAS  Google Scholar 

  • Lee L-H, Zainal N, Azman A-S, Eng S-K, Goh B-H, Yin W-F, Ab Mutalib N-S, Chan K-G (2014) Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. Scientific World Journal. doi:10.1155/2014/698178

    Google Scholar 

  • Li J, Li F, Yu S, Qin S, Wang G (2013) impacts of mariculture on the diversity of bacterial communities within intertidal sediments in the Northeast of China. Microb Ecol 66:861–870

    Article  Google Scholar 

  • Lienen T, Kleyboecker A, Verstraete W, Wuerdemann H (2014) Moderate temperature increase leads to disintegration of floating sludge and lower abundance of the filamentous bacterium Microthrix parvicella in anaerobic digesters. Water Res 65:203–212

    Article  CAS  Google Scholar 

  • Linsak Z, Linsak DT, Glad M, Cenov A, Coklo M, Coklo M, Manestar D, Micovic V (2012) Ecotoxicological characterization of marine sediment in Kostrena coastal area. Coll Antropol 36:1401–1405

    Google Scholar 

  • Llado S, Covino S, Solanas AM, Petruccioli M, D’Annibale A, Vinas M (2015) Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. J Hazard Mater 283:35–43

    Article  CAS  Google Scholar 

  • Lv X, Yu J, Fu Y, Ma B, Qu F, Ning K, Wu H (2014) A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Scientific World Journal. doi:10.1155/2014/437684

    Google Scholar 

  • Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529

    Article  CAS  Google Scholar 

  • Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp nov and Salinispora tropica sp nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766

    Article  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168:311–332

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • Marcos MS, Lozada M, Dionisi HM (2009) Aromatic hydrocarbon degradation genes from chronically polluted Subantarctic marine sediments. Lett Appl Microbiol 49:602–608

    Article  CAS  Google Scholar 

  • Matsumoto A, Kasai H, Matsuo Y, Shizuri Y, Ichikawa N, Fujita N, Omura S, Takahashi Y (2013) Ilumatobacter nonamiense sp nov and Ilumatobacter coccineum sp nov., isolated from seashore sand. Int J Syst Evol Microbiol 63:3404–3408

    Article  CAS  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  CAS  Google Scholar 

  • Mitra A, Santra SC, Mukherjee J (2008) Distribution of actinomycetes, their antagonistic behaviour and the physico-chemical characteristics of the world’s largest tidal mangrove forest. Appl Microbiol Biotechnol 80:685–695

    Article  CAS  Google Scholar 

  • Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel Actinobacteria from marine sponges. Anton Leeuw Int J Gen Mole Microbiol 87:29–36

    Article  CAS  Google Scholar 

  • Mueller-Spitz SR, Crawford KD (2014) Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by Mycobacterium species RJGII-135. Lett Appl Microbiol 58:330–337

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Obhodas J, Valkovic V (2010) Contamination of the coastal sea sediments by heavy metals. Appl Radiat Isot 68:807–811

    Article  CAS  Google Scholar 

  • Oliveros J (2007) VENNY. An interactive tool for comparing lists with Venn diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html

  • Paisse S, Coulon F, Goni-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol Ecol 66:295–305

    Article  CAS  Google Scholar 

  • Paisse S, Goni-Urriza M, Coulon F, Duran R (2010) How a bacterial community originating from a contaminated coastal sediment responds to an oil input. Microb Ecol 60:394–405

    Article  Google Scholar 

  • Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  Google Scholar 

  • Pisano MA, Sommer MJ, Taras L (1992) Bioactivity of chitinolytic actinomycetes of marine origin. Appl Microbiol Biotechnol 36:553–555

    CAS  Google Scholar 

  • Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by Actinobacteria. Int Biodeter Biodegr 88:48–55

    Article  CAS  Google Scholar 

  • Ramesh S, Mathivanan N (2009) Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol 25:2103–2111

    Article  CAS  Google Scholar 

  • Rheims H, Sproer C, Rainey FA, Stackebrandt E (1996) Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology UK 142:2863–2870

    Article  CAS  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    Article  CAS  Google Scholar 

  • Santofimia E, Gonzalez-Toril E, Lopez-Pamo E, Gomariz M, Amils R, Aguilera A (2013) Microbial diversity and its relationship to physicochemical characteristics of the water in two extreme acidic pit lakes from the Iberian Pyrite Belt (SW Spain). Plos One 8:e66746

    Article  CAS  Google Scholar 

  • Sasaki T, Maki H, Ishihara M, Harayama S (1998) Vanadium as an internal marker to evaluate microbial degradation of crude oil. Environ Sci Technol 32:3618–3621

    Article  CAS  Google Scholar 

  • Schafer J, Jackel U, Kampfer P (2010) Development of a new PCR primer system for selective amplification of Actinobacteria. FEMS Microbiol Lett 311:103–112

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz a anthracene, and benzo a pyrene by Mycobacterium sp strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    CAS  Google Scholar 

  • Sette LD, Simioni KCM, Vasconcellos SP, Dussan LJ, Neto EVS, Oliveira VM (2007) Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Anton Leeuw Int J Gen Mole Microbiol 91:253–266

    Article  CAS  Google Scholar 

  • Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, Podar M (2013) Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol 15:1882–1899

    Article  CAS  Google Scholar 

  • Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: a Web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb Ecol 53:562–570

    Article  CAS  Google Scholar 

  • Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342

    CAS  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  Google Scholar 

  • Song Z, Zhi X, Li W, Jiang H, Zhang C, Dong H (2009) Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol J 26:256–263

    Article  CAS  Google Scholar 

  • Stach JEM, Bathe S, Clapp JP, Burns RG (2001) PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiol Ecol 36:139–151

    Article  CAS  Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  CAS  Google Scholar 

  • Stauffert M, Cravo-Laureau C, Jezequel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin F-X, Duran R (2013) Impact of oil on bacterial community structure in bioturbated sediments. Plos One 8:e65347

    Article  CAS  Google Scholar 

  • Steingrube VA, Wallace RJ, Steele LC, Pang YJ (1991) Mercuric reductase-activity and evidence of broad-spectrum mercury resistance among clinical isolates of rapidly growing mycobacteria. Antimicrob Agents Chemother 35:819–823

    Article  CAS  Google Scholar 

  • Stevens H, Brinkhoff T, Rink B, Vollmers J, Simon M (2007) Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem. Environ Microbiol 9:1810–1822

    Article  CAS  Google Scholar 

  • Tang S-K, Zhi X-Y, Wang Y, Shi R, Lou K, Xu L-H, Li W-J (2011) Haloactinopolyspora alba gen. nov., sp. nov., a halophilic filamentous actinomycete isolated from a salt lake, with proposal of Jiangellaceae fam. nov. and Jiangellineae subord. nov. Int J Syst Evol Microbiol 61:194–200

    Article  CAS  Google Scholar 

  • Traven L, Zaja R, Loncar J, Smital T, Micovic V (2008) CYP1A induction potential and the concentration of priority pollutants in marine sediment samples — in vitro evaluation using the PLHC-1 fish hepatoma cell line. Toxicol Vitro 22:1648–1656

    Article  CAS  Google Scholar 

  • Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology UK 145:3305–3315

    Article  CAS  Google Scholar 

  • Volant A, Bruneel O, Desoeuvre A, Hery M, Casiot C, Bru N, Delpoux S, Fahy A, Javerliat F, Bouchez O, Duran R, Bertin PN, Elbaz-Poulichet F, Lauga B (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 90:247–263

    Article  CAS  Google Scholar 

  • Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559

    Article  CAS  Google Scholar 

  • Weinstein JN et al (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349

    Article  CAS  Google Scholar 

  • Williams RJ, Howe A, Hofmockel KS (2014) Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol 5. doi:10.3389/fmicb.2014.00358

  • Wu JY, Guan TW, Jiang HC, Zhi XY, Tang SK, Dong HL, Zhang LL, Li WJ (2009) Diversity of actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 13:623–632

    Article  Google Scholar 

  • Yamamura H, S-y O, Nakagawa Y, Ishida Y, Hamada M, Otoguro M, Tamura T, Hayakawa M (2011) Nocardioides iriomotensis sp nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 61:2205–2209

    Article  CAS  Google Scholar 

  • Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW (2012) Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78:7626–7637

    Article  CAS  Google Scholar 

  • Zhang G, Cao T, Ying J, Yang Y, Ma L (2014) Diversity and novelty of Actinobacteria in Arctic marine sediments. Anton Leeuw Int J Gen Mole Microbiol 105:743–754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the French/Croatian bilateral program PHC-Cogito ISTRIA (Exploring and exploiting the bacterial diversity in the West Istria Sea: focus on marine Actinobacteria; project no. 25036XB), and the Adris Foundation-2011 and the Croatian Ministry of Science, Education and Sports (project no. 098-0982913-2877). We would like to thank all partners of the ISTRIA project and MELODY group for their useful discussions. We acknowledge the Regional Platform for Environmental Microbiology PREMICE supported by the Aquitaine Regional Government Council (France) and the urban community of Pau-Pyrénées (France). We acknowledge C. Moya for technical assistance during sampling campaign and V. Vucelić for chemical analyses (ZZJZ Rijeka).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Duran.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, R., Bielen, A., Paradžik, T. et al. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia. Environ Sci Pollut Res 22, 15215–15229 (2015). https://doi.org/10.1007/s11356-015-4240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4240-1

Keywords

Navigation