Skip to main content
Log in

Morphological alterations in the liver of yellow perch (Perca flavescens) from a biological mercury hotspot

  • Molecular and cellular effects of contamination in aquatic ecosystems
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mercury (Hg) contamination is a global issue due to its anthropogenic release, long-range transport, and deposition in remote areas. In Kejimkujik National Park and National Historic Site, Nova Scotia, Canada, high concentrations of total mercury (THg) were found in tissues of yellow perch (Perca flavescens). The aim of this study was to evaluate a possible relationship between THg concentrations and the morphology of perch liver as a main site of metal storage and toxicity. Yellow perch were sampled from five lakes known to contain fish representing a wide range in Hg concentrations in fall 2013. The ultrastructure of hepatocytes and the distribution of Hg within the liver parenchyma were analyzed by transmission electron microscopy (TEM) and electron energy loss spectrometry (EELS). The relative area of macrophage aggregates (MAs) in the liver was determined using image analysis software and fluorescence microscopy. No relation between general health indicators (Fulton’s condition index) and THg was observed. In line with this, TEM examination of the liver ultrastructure revealed no prominent pathologies related to THg accumulation. However, a morphological parameter that appeared to increase with muscle THg was the relative area of MAs in the liver. The hepatic lysosomes appeared to be enlarged in samples with the highest THg concentrations. Interestingly, EELS analysis revealed that the MAs and hepatic lysosomes contained Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agius C, Roberts RJ (1981) Effects of starvation on the melano-macrophage centres of fish. J Fish Biol 19:161–169. doi:10.1111/j.1095-8649.1981.tb05820.x

    Article  Google Scholar 

  • Agius C, Roberts RJ (2003) Melano-macrophage centres and their role in fish pathology. J Fish Dis 26:499–509. doi:10.1046/j.1365-2761.2003.00485.x

    Article  CAS  Google Scholar 

  • Baatrup E, Danscher G (1987) Cytochemical demonstration of mercury deposits in trout liver and kidney following methyl mercury intoxication: differentiation of two mercury pools by selenium. Ecotoxicol Environ Saf 14(2):129–141. doi:10.1016/0147-6513(87)90055-8

    Article  CAS  Google Scholar 

  • Barghigiani C, Pellegrinis D, Carpene E (1989) Mercury binding proteins in liver and muscle of flat fish from the northern Tyrrhenian sea. Comp Biochem Physiol C: Comp Pharmacol 94(1):309–312. doi:10.1016/0742-8413(89)90184-9

    Article  Google Scholar 

  • Barst BD, Gevertz AK, Chumchal MM, Smith JD, Rainwater TR, Drevnick PE, Hudelson KE, Hart A, Verbeck GF, Roberts AP (2011) Laser ablation ICP-MS co-localization of mercury and immune response in fish. Environ Sci Technol 45(20):8982–8988. doi:10.1021/es201641x

    Article  CAS  Google Scholar 

  • Batchelar K (2011) Effects of mercury on the general and reproductive health of yellow perch in Kejimkujik National Park, Nova Scotia. Msc. thesis, University of New Brunswick

  • Batchelar KL, Kidd KA, Drevnick PE, Munkittrick KR, Burgess NM, Roberts AP, Smith JD (2013) Evidence of impaired health in yellow perch (Perca flavescens) from a biological mercury hotspot in northeastern north America. Environ Toxicol Chem 32(3):627–637. doi:10.1002/etc.2099

    Article  CAS  Google Scholar 

  • Beckvar N, Dillon TM, Read LB (2005) Approaches for linking whole-body fish tissue residues of mercury or DDT to biological effects thresholds. Environ Toxicol Chem 24(8):2094–2105. doi:10.1897/04-284R.1

    Article  CAS  Google Scholar 

  • Blazer VS, Wolke RE, Brown J, Powell CA (1987) Piscine macrophage aggregate parameters as health monitors: effect of age, sex, relative weight, season and site quality in largemouth bass (Micropterus salmoides). Aquat Toxicol 10(4):199–215. doi:10.1016/0166-445X(87)90012-9

    Article  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49(5):1010–1017. doi:10.1139/f92-113

    Article  CAS  Google Scholar 

  • Brown CL, George CJ (1985) Age-dependent accumulation of macrophage aggregates in the yellow perch, Perca flavescens (Mitchill). J Fish Dis 8:135–138. doi:10.1111/j.1365-2761.1985.tb01195.x

    Article  Google Scholar 

  • Brown TG, Runciman B, Bradford MJ, Pollard S (2009) A biological synopsis of yellow perch (Perca flavescens). Can Manuscr Rep Fish Aquat Sci 2883:v + 28 p

  • Cizdziel J, Hinners T, Cross C, Pollard J (2003) Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA. J Environ Monitor 5(5):802. doi:10.1039/b307641p

    Article  CAS  Google Scholar 

  • Dinno A (2014) dunn.test: Dunn’s test of multiple comparisons using rank sums. R package version 1.2.0 http://CRAN.R-project.org/package=dunn.test, Accessed 12 Oct 2014

  • Dittman JA, Driscoll CT (2009) Factors influencing changes in mercury concentrations in lake water and yellow perch (Perca flavescens) in Adirondack lakes. Biogeochemistry 93(3):179–196. doi:10.1007/s10533-009-9289-9

    Article  CAS  Google Scholar 

  • Drevnick PE, Roberts AP, Otter RR, Hammerschmidt CR, Klaper R, Oris JT (2008) Mercury toxicity in livers of northern pike (Esox lucius) from Isle Royale, USA. Comp Biochem Physiol C: Toxicol Pharmacol 147(3):331–338. doi:10.1016/j.cbpc.2007.12.003

    Google Scholar 

  • Durnford D, Dastoor A, Figueras-Nieto D, Ryjkov A (2010) Long range transport of mercury to the Arctic and across Canada. Atmos Chem Phys 10:6063–6086. doi:10.5194/acp-10-6063-2010

    Article  CAS  Google Scholar 

  • Evers DC, Kaplan JD, Meyer MW, Reaman PS, Braselton WE, Major A, Burgess N, Scheuhammer AM (1998) Geographic trend in mercury measured in common loon feathers and blood. Environ Toxicol Chem 17(2):173–183. doi:10.1002/etc.5620170206

    Article  CAS  Google Scholar 

  • Evers DC, Han YJ, Driscoll CT, Kamman NC, Goodale MW, Fallon Lambert K, Holsen TM, Chen CY, Clair TA, Butler T (2007) Biological mercury hotspots in the Northeastern United States and Southeastern Canada. Bioscience 57(1):29–43. doi:10.1641/B570107

    Article  Google Scholar 

  • Fishelson L (2006) Cytomorphological alterations of the thymus, spleen, head-kidney, and liver in cardinal fish (Apogonidae, Teleostei) as bioindicators of stress. J Morphol 267(1):57–69. doi:10.1002/jmor.10385

    Article  CAS  Google Scholar 

  • Fournie JW, Summers JK, Courtney LA, Engle VD (2001) Utility of splenic macrophage aggregates as an indicator of fish exposure to degraded environments. J Aquat Anim Health 13(2):105–116. doi:10.1577/1548-8667(2001)013<0105:UOSMAA>2.0.CO;2

    Article  Google Scholar 

  • Friedmann AS, Watzin MC, Brinck-Johnsen T, Leiter JC (1996) Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquat Toxicol 35(3–4):265–278. doi:10.1016/0166-445X(96)00796-5

    Article  CAS  Google Scholar 

  • Giari L, Simoni E, Manera M, Dezfuli BS (2008) Histo-cytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicol Environ Saf 70(3):400–410. doi:10.1016/j.ecoenv.2007.08.013

    Article  CAS  Google Scholar 

  • Grubbs FE (1950) Sample Criteria for testing outlying observations. Ann Math Stat 21(1):27–58

    Article  Google Scholar 

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  • Grund S, Keiter S, Böttcher M, Seitz N, Wurm K, Manz W, Hollert H, Braunbeck T (2010) Assessment of fish health status in the Upper Danube River by investigation of ultrastructural alterations in the liver of barbel Barbus barbus. Dis Aquat Org 88:235–248. doi:10.3354/dao02159

  • Kamman NC, Burgess NM, Driscoll CT, Simonin HA, Goodale W, Linehan J, Estabrook R, Hutcheson M, Major A, Scheuhammer AM, Scruton DA (2005) Mercury in freshwater fish of northeast North America—a geographic perspective based on fish tissue monitoring databases. Ecotoxicology 14(1–2):163–180. doi:10.1007/s10646-004-6267-9

    Article  CAS  Google Scholar 

  • Kapp N, Studer D, Gehr P, Geiser M (2007) Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens. Methods Mol Biol 369:431–447. doi:10.1007/978-1-59745-294-6_21

    Article  CAS  Google Scholar 

  • Kidd KA, Batchelar KL (2011) Mercury. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of non-essential metals, volume 31B. Elsevier, Oxford, UK, pp 238–284. doi:10.1002/etc.5620160714

  • Komsta L (2011) outliers: tests for outliers. R package version 0.14. http://CRAN.R-project.org/package=outliers, Accessed 12 Oct 2014

  • Lescord GL, Kidd KA, Kirk JL, O’Driscoll NJ, Wang X, Muir DC (2014) Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. Sci Total Environ. doi:10.1016/j.scitotenv.2014.04.133

    Google Scholar 

  • Meinelt T, Kueger R, Pietrock M, Osten R, Steinberg C (1997) Mercury pollution and macrophage centres in pike (Esox lucius) tissues. Environ Sci Pollut Res 4(1):32–36. doi:10.1007/BF02986262

    Article  CAS  Google Scholar 

  • Mela M, Randi MA, Ventura DF, Carvalho CE, Pelletier E, Oliveira Ribeiro CA (2007) Effects of dietary methylmercury on liver and kidney histology in the neotropical fish Hoplias malabaricus. Ecotoxicol Environ Saf 68(3):426–435. doi:10.1016/j.ecoenv.2006.11.013

    Article  CAS  Google Scholar 

  • Meseguer J, Lopez-Ruiz A, Esteban MA (1994) Melano-macrophages of the seawater teleosts, sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata): morphology, formation and possible function. Cell Tissue Res 277(1):1–10. doi:10.1007/BF00303074

    Google Scholar 

  • Mizuno S, Misaka N, Miyakoshi Y, Takeuchi K, Kasahara N (2002) Effects of starvation on melano-macrophages in the kidney of masu salmon (Oncorhynchus masou). Aquaculture 209(1–4):247–255. doi:10.1016/S0044-8486(01)00716-5

    Article  Google Scholar 

  • Munn MD, Short TM (1997) Spatial heterogeneity of mercury bioaccumulation by walleye in Franklin D. Roosevelt Lake and the Upper Columbia River, Washington. Trans Am Fish Soc 126(3):477–487. doi:10.1577/1548-8659(1997)126<0477:SHOMBB>2.3.CO;2

    Article  CAS  Google Scholar 

  • O’Driscoll NJ, Rencz AN, Lean DR (2005) Review of factor affecting mercury fate in Kejimkujik Park, Nova Scotia. In: O’Driscoll NJ, Rencz AN, Lean DR (eds) Mercury cycling in a wetland-dominated ecosystem: a multidisciplinary study. SETAC Press, Pensacola, pp 5–13

    Google Scholar 

  • Passantino L, Santamaria N, Zupa R, Pousis C, Garofalo R, Cianciotta A, Jirillo E, Acone F, Corriero A (2014) Liver melanomacrophage centres as indicators of Atlantic bluefin tuna, Thunnus thynnus L. well-being. J Fish Dis 37(3):241–250. doi:10.1111/jfd.12102

    Article  CAS  Google Scholar 

  • Purchase CF (2004) Influence of sexually dimorphic growth and environmental heterogeneity on intra-specific life history traits. PhD Thesis, University of Toronto, Toronto

  • Purchase CF, Collins NC, Morgan GE, Shuter BJ (2005) Predicting life history traits of yellow perch from environmental characteristics of lakes. Trans Am Fish Soc 134(5):1369–1381. doi:10.1577/T04-182.1

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/, Accessed 12 Oct 2014

  • Raldúa D, Díez S, Bayona JM, Barceló D (2007) Mercury levels and liver pathology in feral fish living in the vicinity of a mercury cell chlor-alkali factory. Chemosphere 66(7):1217–1225. doi:10.1016/j.chemosphere.2006.07.053

    Article  Google Scholar 

  • Schwindt AR, Truelove N, Schreck CB, Fournie JW, Landers DH, Kent ML (2006) Quantitative evaluation of macrophage aggregates in brook trout Salvelinus fontinalis and rainbow trout Oncorhynchus mykiss. Dis Aquat Org 68:101–113. doi:10.3354/dao068101

    Article  Google Scholar 

  • Schwindt AR, Fournie JW, Landers DH, Schreck CB, Kent ML (2008) Mercury concentrations in salmonids from western U.S. National Parks and relationships with age and macrophage aggregates. Environ Sci Technol 42(4):1365–1370. doi:10.1021/es702337m

    Article  CAS  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63. doi:10.1146/annurev.environ.051308.084314

    Article  Google Scholar 

  • Streets DG, Devane MK, Lu Z, Bond TC, Sunderland EM, Jacob DJ (2011) All-time releases of mercury to the atmosphere from human activities. Environ Sci Technol 45(24):10485–10491. doi:10.1021/es202765m

    Article  CAS  Google Scholar 

  • Suns K, Hitchin G (1990) Interrelationships between mercury levels in yearling yellow perch, fish condition and water quality. Water Air Soil Pollut 50(3–4):255–265. doi:10.1007/BF00280627

    Article  CAS  Google Scholar 

  • Vigliano FA, Bermúdez R, Quiroga MI, Nieto JM (2006) Evidence for melano-macrophage centres of teleost as evolutionary precursors of germinal centres of higher vertebrates: an immunohistochemical study. Fish Shellfish Immunol 21(4):467–471. doi:10.1016/j.fsi.2005.12.012

    Article  CAS  Google Scholar 

  • Wolke RE (1992) Piscine macrophage aggregates, a review. Annu Rev Fish Dis 2:91–108. doi:10.1016/0959-8030(92)90058-6

    Article  Google Scholar 

  • Wyn B, Kidd KA, Burgess NM, Curry RA (2009) Mercury biomagnification in the food webs of acidic lakes in Kejimkujik National Park and National Historic Site, Nova Scotia. Can J Fish Aquat Sci 66(9):1532–1545. doi:10.1139/F09-097

  • Wyn B, Kidd KA, Burgess NM, Curry RA, Munkittrick KR (2010) Increasing mercury in yellow perch at a hotspot in Atlantic Canada, Kejimkujik National Park. Environ Sci Technol 44(23):9176–9181. doi:10.1021/es1018114

    Article  CAS  Google Scholar 

  • Zaman K, Pardini RS (1996) An overview of the relationship between oxidative stress and mercury and arsenic. Toxic Subst Mech 15:151–181

    Google Scholar 

Download references

Acknowledgments

We thank Mark Gautreau for his help with the fieldwork and Angella Mercer for her support with mercury analysis. We also would like to thank Véronique Gaschen for her help with electron microscopy, Ana Stojiljkovic for her assistance, and Herbert Schaffer for his help with EELS. Funding was provided from the Natural Sciences and Engineering Research Council Discovery grant (KAK), the Canada Research Chairs program (KAK), and undergraduate funds of RWTH Aachen and ERASMUS program. Parks Canada provided in-kind support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henner Hollert.

Additional information

Responsible editor: Cinta Porte

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, AK., Brinkmann, M., Baumann, L. et al. Morphological alterations in the liver of yellow perch (Perca flavescens) from a biological mercury hotspot. Environ Sci Pollut Res 22, 17330–17342 (2015). https://doi.org/10.1007/s11356-015-4177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4177-4

Keywords

Navigation