Environmental Science and Pollution Research

, Volume 21, Issue 15, pp 9334–9343

On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution

  • Benedicte Prelot
  • Imen Ayed
  • Franck Marchandeau
  • Jerzy Zajac
Research Article

DOI: 10.1007/s11356-014-2862-3

Cite this article as:
Prelot, B., Ayed, I., Marchandeau, F. et al. Environ Sci Pollut Res (2014) 21: 9334. doi:10.1007/s11356-014-2862-3

Abstract

Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25 % of the “ideal” value in Effluent 1 and 50 % in Effluent 2; a further decrease to about 15 % was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60 % of the ideal value in the two effluents for Amberlite® IRN77 and 75 % for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

Keywords

Heavy metal pollutionCation-exchange resinsSimulated effluentsCompetitive sorptionIsothermal titration calorimetry

Supplementary material

11356_2014_2862_MOESM1_ESM.pdf (249 kb)
ESM 1The supplementary data include: (i) literature review on the equilibrium, thermodynamic, or kinetic aspects of heavy metal sorption onto weakly or strongly acidic resins; (ii) detailed experimental procedures for measurement of individual sorption isotherms for cesium and strontium, as well as molar enthalpy changes accompanying metal adsorption from single-component solutions; and (iii) rationalization of the main conclusion on the basis of ion-exchange equation (PDF 249 kb)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benedicte Prelot
    • 1
  • Imen Ayed
    • 1
  • Franck Marchandeau
    • 1
  • Jerzy Zajac
    • 1
  1. 1.Institut Charles Gerhardt de Montpellier, CNRS UMR 5253Université Montpellier 2, Equipe Agrégats, Interfaces et Matériaux pour l’EnergieMontpellier Cedex 5France