Skip to main content

Advertisement

Log in

Sources and characteristics of carbonaceous aerosols at Agra “World heritage site” and Delhi “capital city of India”

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Agra, one of the oldest cities “World Heritage site”, and Delhi, the capital city of India are both located in the border of Indo-Gangetic Plains (IGP) and heavily loaded with atmospheric aerosols due to tourist place, anthropogenic activities, and its topography, respectively. Therefore, there is need for monitoring of atmospheric aerosols to perceive the scenario and effects of particles over northern part of India. The present study was carried out at Agra (AGR) as well as Delhi (DEL) during winter period from November 2011 to February 2012 of fine particulate (PM2.5: d < 2.5 μm) as well as associated carbonaceous aerosols. PM2.5 was collected at both places using medium volume air sampler (offline measurement) and analyzed for organic carbon (OC) and elemental carbon (EC). Also, simultaneously, black carbon (BC) was measured (online) at DEL. The average mass concentration of PM2.5 was 165.42 ± 119.46 μg m−3 at AGR while at DEL it was 211.67 ± 41.94 μg m−3 which is ~27 % higher at DEL than AGR whereas the BC mass concentration was 10.60 μg m−3. The PM2.5 was substantially higher than the annual standard stipulated by central pollution control board and United States Environmental Protection Agency standards. The average concentrations of OC and EC were 69.96 ± 34.42 and 9.53 ± 7.27 μm m−3, respectively. Total carbon (TC) was 79.01 ± 38.98 μg m−3 at AGR, while it was 50.11 ± 11.93 (OC), 10.67 ± 3.56 μg m−3 (EC), and 60.78 ± 14.56 μg m−3 (TC) at DEL. The OC/EC ratio was 13.75 at (AGR) and 5.45 at (DEL). The higher OC/EC ratio at Agra indicates that the formation of secondary organic aerosol which emitted from variable primary sources. Significant correlation between PM2.5 and its carbonaceous species were observed indicating similarity in sources at both sites. The average concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) at AGR were 48.16 and 26.52 μg m−3 while at DEL it was 38.78 and 27.55 μg m−3, respectively. In the case of POC, similar concentrations were observed at both places but in the case of SOC higher over AGR by 24 in comparison to DEL, it is due to the high concentration of OC over AGR. Secondary organic aerosol (SOA) was 42 % higher at AGR than DEL which confirms the formation of secondary aerosol at AGR due to rural environment with higher concentrations of coarse mode particles. The SOA contribution in PM2.5 was also estimated and was ~32 and 12 % at AGR and DEL respectively. Being high loading of fine particles along with carbonaceous aerosol, it is suggested to take necessary and immediate action in mitigation of the emission of carbonaceous aerosol in the northern part of India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akhter MS, Chughtal AR, Smith DM (1985) The structure of hexane soot. I. Spectroscopic studies. Appl Spect 39:143–153

    Article  CAS  Google Scholar 

  • Ancelet T, Davy PK, Trompetter WJ, Markwitz A, Weatherburn DC (2013) Carbonaceous aerosols in a wood burning community in rural New Zealand. Atmos Poll Res 4:245–249

    CAS  Google Scholar 

  • Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058

    Article  CAS  Google Scholar 

  • Asa-Awuku A, Nenes A, Gao S, Flagan RC, Seinfeld JH (2010) Water-soluble SOA from alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity. Atmos Chem Phys Discus 10:1585–1597

    Article  CAS  Google Scholar 

  • Attri AK, Kumar U, Jain VK (2001) Formation of ozone by fireworks. Nature 411:1015

    Article  CAS  Google Scholar 

  • Awasthi AR, Agarwal SK, Mittal N, Singh K, Gupta PK (2011) Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India. J Environ Monit 13:1073–1081

    Article  CAS  Google Scholar 

  • Begum M, Minar MH (2012) Comparative study about body composition of different sis, shell fish and ilish; commonly available in Bangladesh. Trends Fish Res 1(1):38–42

    Google Scholar 

  • Bian H, Tie X, Cao J, Ying Z, Han S, Xue Y (2011) Analysis of a severe dust storm event over China: application of the WRF-dust model. Aerosol Air Qual Res 11:419–428

    Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241

    Article  CAS  Google Scholar 

  • Blando JD, Turpin BJ (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos Environ 34:1623–1632

    Article  CAS  Google Scholar 

  • Cabada JC, Pandis SN, Subramanian R, Robinson AL, Polidori A, Turpin B (2004) Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method. Aerosol Sci Technol 38:140–155

    Article  CAS  Google Scholar 

  • Cachier H, Liousse C, Pertuisol MH, Gaudichet A, Echalar F, Lacaux JP (1996) African fine particulate emissions and atmospheric influence. In: Levine EJS (ed) Biomass burning and global change. MIT Press, London, pp 428–440

    Google Scholar 

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781

    Article  CAS  Google Scholar 

  • Chen X, Yu JZ (2007) Measurement of organic mass to organic carbon ratio in ambient aerosol samples using a gravimetric technique in combination with chemical analysis. Atmos Environ 41:8857–8864

    Article  CAS  Google Scholar 

  • Chen Y, Zhi G, Feng Y, Fu J, Feng J, Sheng G, Simoneit BRT (2006) Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophys Res Lett 33. http://dx.doi.org/10.1029/2006GL026966.

  • Chow JC, Watson JG (1993) The DRI thermal/optical reflectance carbon analysis system: description, evaluation, and applications in U.S. air quality studies. Atmos Environ 27A:1185–1201

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol 34: 23–34

    Google Scholar 

  • Chow JC, Watson JG, Lu Z, Lowenthal DH, Frazier CA, Solomon PA, Thuillier RH, Magliano K (1996) Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos Environ 30:2079–2112

    Article  CAS  Google Scholar 

  • Crutzen PJ and Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    Google Scholar 

  • Decesari S, Facchini MC, Fuzzi S, Tagliavini E (2000) Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. J Geophys Res 105:1481–1489

    Article  CAS  Google Scholar 

  • Dey S, Girolamo LD, Donkelaar AV, Tripathi SN, Gupta T, Mohan M (2012) Variability of outdoor fine particulate (PM2.5) concentration in the Indian Subcontinent: a remote sensing approach. Remote Sanhsing Environ 127:153–161

    Article  Google Scholar 

  • Docherty KS, Stone EA, Ulbrich IM, DeCarlo PF, Snyder DC, Schauer JJ, Peltier RE, Weber RJ, Murphy SM, Seinfeld JH, Grover BD, Eatough DJ, Jimenez JL (2008) Apportionment of primary and secondary organic aerosols in southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1). Environ Sci Technol 42:7655–7662

    Article  CAS  Google Scholar 

  • Donahue NM, Robinson AL, Pandis SN (2009) Atmospheric organic particulate matter: from smoke to secondary organic aerosol. Atmos Environ 43:94–106

    Article  CAS  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) Model, report, Air Resource Laboratory, NOAA, Silver, Spring, Md. http://www.arl.noaa.gov/ready/hyspli t4.html

  • Duan JC, Tan JH, Cheng DX, Bi XH, Deng WJ, Sheng GY, Fu JM, Wong MH (2007) Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China. Atmos Environ 41:2895–2903

    Article  CAS  Google Scholar 

  • Dutkiewicz VA, Alvi S, Ghauri BM, Choudhary MI, Husain L (2009) Black carbon aerosols in urban air in South Asia. Atmos Environ 43:1737–1744

    Article  CAS  Google Scholar 

  • Eatough DJ, Wadsworth A, Eatough DA, Crawford JW, Hansen LD, Lewis EA (1993) A multiple-system, multi-channel diffusion denuder sampler for the determination of fine-particulate organic material in the atmosphere. Atmos Environ 27:1213–1219

    Article  Google Scholar 

  • Fan X, Brook JR, Mabury SA (2003) Sampling atmospheric carbonaceous aerosols using an integrated organic gas and particle sampler. Environ Sci Tech 37:3145–3151

    Article  CAS  Google Scholar 

  • Feng J, Chan CK, Fang M, Hu M, He L, Tang X (2006) Characteristics of organic matter in PM2.5 in Shanghai. Chemosphere 64:1393–1400

    Article  CAS  Google Scholar 

  • Feng Y, Chen Y, Guo H, Zhi G, Xiong S, Li J, Sheng G, Fu J (2009) Characteristics of organic carbon in PM2.5 samples in Shanghai, China. Atmos Res 92:434–442

    Article  CAS  Google Scholar 

  • Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and non-foggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111, D15217. doi:10.1029/2005JD007029

    Article  Google Scholar 

  • Goyal P, Sidharta (2002) Effect of wind on SO2 & SPM concentration in Delhi. Atmos Environ 36: 2925–2930

  • Gray HA, Cass GR, Huntzicker JJ, Heyerdahl EK, Rau JA (1986) Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environ Sci Tech 20:580–589

    Article  CAS  Google Scholar 

  • Guttikunda SK, Calori G (2013) A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India. Atmos Environ 67:101–111

    Article  CAS  Google Scholar 

  • Hansen ADA (2005) The Aethalometer, manual. Magee Scientific, Berkeley, California, USA

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lacis A, Oinas V (2000) Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci 97:9875–9880

    Article  CAS  Google Scholar 

  • He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK (2001) The characteristics of PM2.5 in Beijing, China. Atmos Environ 35:4959–4970

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis: contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Hussain L, Dutkiewicz VA, Khan AJ, Ghauri BM (2007) Characterization of carbonaceous aerosols in urban air. Atmos Environ 41:6872–6883

    Article  Google Scholar 

  • IPCC (1996) Intergovernmental Panel on Climate Change, Climate change 1995. Cambridge University Press, UK. pp. 17–26

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    Article  CAS  Google Scholar 

  • Jacobson MC, Hansson HC, Noone KJ, Charlson RJ (2000) Organic atmospheric aerosols: review and state of the science. Rev Geophys 38: 267–294

    Google Scholar 

  • Kaupp H, McLachlan MS (1999) Atmospheric particle size distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) and their implications for wet and dry deposition. Atmos Environ 33(1):85–95

    Article  CAS  Google Scholar 

  • Kleeman MJ, Schauer JJ, Cass GR (2000) Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ Sci Technol 34:1132–1142

    Article  CAS  Google Scholar 

  • Latha KM, Badrinath KVS (2005) Seasonal variations of black carbon aerosols and total aerosols mass concentrations over urban environment in India. Atmos Environ 39:4129–4141

    Article  CAS  Google Scholar 

  • Lewtas J, Pang YB, Booth D, Reimer S, Eatough DJ, Gundel LA (2001) Comparison of sampling methods for semi-volatile organic carbon associated with PM2.5. Aerosol Sci Tech 34(1):9–22

    Article  CAS  Google Scholar 

  • Lin JJ, Tai HS (2001) Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan. Atmos Environ 35:2627–2636

    Article  CAS  Google Scholar 

  • Lin P, Hu M, Deng Z, Slanina J, Han S, Kondo Y, Takegawa N, Miyazaki Y, Zhao Y, Sugimoto N (2009) Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon. J Geophys Res 114: (D00G11). doi:10.1029/2008JD010902.

  • Lonati G, Ozgen S, Giugliano M (2007) Primary and secondary carbonaceous species in PM2.5 samples in Milan (Italy). Atmos Environ 41(22):4599–4610

    Article  CAS  Google Scholar 

  • Mader BT, Pankow JF (2001) Gas/solid partitioning of semivolatile organic compounds (SOCs) to air filters. 3. An analysis of gas adsorption artifacts in measurements of atmospheric SOCs and organic carbon (OC) when using Teflon membrane filters and quartz fiber filters. Environ Sci Technol 35:3422–3432

    Article  CAS  Google Scholar 

  • Mader BT, Schauer JJ, Seinfeld JH, Flagan RC, Yu JZ, Yang H, Lim HJ, Turpin BJ, Deminter JT, Heidemann G, Bae MS, Quinn P, Bates T, Eatough DJ, Huebert BJ, Bertram T, Howell S (2003) Sampling methods used for the collection of particle-phase organic and elemental carbon during ACE-Asia. Atmos Environ 37:1435–1449

    Article  CAS  Google Scholar 

  • Matsui H, Koike M, Takegawa N, Kondo Y, Griffin RJ, Miyazaki Y, Yokouchi Y, Ohara T (2009) Secondary organic aerosol formation in urban air: temporal variations and possible contributions from unidentified hydrocarbons. J Geophys Res Atmos 114: D04201. doi:10.1029/2008JD010164

  • Mishra AK, Shibata T (2012) Climatologically aspects of seasonal variation of aerosol vertical distribution over central Indo-Gangetic belt (IGB) inferred by the space-borne lidar CALIOP. Atmos Environ 46:365–375

    Article  CAS  Google Scholar 

  • Pachauri T, Singla V, Satsangi A, Lakhani A, Kumari KM (2013) Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmos Res 128:98–110

    Article  CAS  Google Scholar 

  • Pandey P, Khan AH, Verma AK, Singh KA, Mathur N, Kisku GC, Barman SC (2012) Seasonal trends of PM2.5 and PM10 in ambient air and their correlation in ambient air of Lucknow City, India. Bull Environ Contam Toxicol 88(2):265–270

    Article  CAS  Google Scholar 

  • Pandis SN, Harley RA, Cass GR, Seinfeld JH (1992) Secondary organic aerosol formation and transport. Atmos Environ 26A:2269–2282

    Article  CAS  Google Scholar 

  • Pipal AS, Kulshrestha A, Taneja A (2011) Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in North Central part of India. Atmos Environ 45:3621–3630

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci 41:88–98

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2008) atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42:6785–6796

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2010) A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources and temporal variability. J Geophys Res 115, D24313. doi:10.1029/2010JD014188

    Article  Google Scholar 

  • Ramachandran S, Rajesh TA (2007) Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada, and the United States. J Geophys Res 112:D06211

    Google Scholar 

  • Rastogi N, Sarin MM (2006) Chemistry of aerosols over a semi-arid region: evidence for acid neutralization by mineral dust. Geophys Res Lett 33:L23815. doi:10.1029/2006GL027708

    Article  Google Scholar 

  • Rastogi N, Sarin MM (2009) Quantitative chemical composition and characteristics of aerosols over western India: one-year record of temporal variability. Atmos Environ 43(22–23):3481–3488

    Article  CAS  Google Scholar 

  • Reddy BSK, Kumar KR, Balakrishnaiah G, Gopal KR, Reddy RR, Reddy LSS, Narasimhulu K, Vijaya Bhaskara Rao S, Kiran Kumar T, Balanarayana C, Krishna Moorthy K, Suresh Babu S (2011) Aerosol climatology over an urban site, Tirupati (India) derived from columnar and surface measurements: first time results obtained from a 30-day campaign. J Atmos Sol Terr Phys 73:1727–1738

    Article  Google Scholar 

  • Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112, D21307. doi:10.1029/2006JD008150

    Article  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262

    Article  CAS  Google Scholar 

  • Safai PD, Kewat S, Praveen PS, Rao PSP, Momin GA, Ali K, Devara PCS (2007) Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos Environ 41:2699–2709

    Google Scholar 

  • Salam A, Bauer H, Kassin K, Ullah SM, Puxbaum H (2003) Aerosol chemical characteristics of a mega-city in Southeast Asia (Dhaka-Bangladesh). Atmos Environ 37(18):2517–2528

    Article  CAS  Google Scholar 

  • Salma I, Chi X, Maenhaut W (2004) Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary. Atmos Environ 38:27–36

    Article  CAS  Google Scholar 

  • Satsangi A, Pachauri T, Singla V, Lakhani A, Kumari MK (2012) Organic and elemental carbon aerosols at a suburban site. Atmos Res 113:13–21

    Article  CAS  Google Scholar 

  • Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2001) Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environ Sci Tech 35:1716–1728

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Tech 36:1169–1180

    Article  CAS  Google Scholar 

  • Schwarz J, Chi X, Maenhaut W, Civiš M, Hovorka J, Smolík J (2008) Elemental and organic carbon in atmospheric aerosols at downtown and suburban sites in Prague. Atmos Res 90:287–302

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sharma M, Maloo S (2005) Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos Environ 39:6015–6026

    Article  CAS  Google Scholar 

  • Smith DJT, Harrison RM, Luhana L, Pio CA, Castro LM, Tariq MN, Harat S, Quraishi T (1996) Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan. Atmos Environ 30:4031–4040

    Article  CAS  Google Scholar 

  • Srivastava A, Jain VK, Srivastava A (2009) SEM-EDX analysis of various sizes aerosols in Delhi India. Environ Monit Assess 150:405–416

    Article  CAS  Google Scholar 

  • Strader R, Lurman F, Pandis SN (1999) Evaluation of secondary organic aerosol formation in winter. Atmos Environ 33:4849–4863

    Article  CAS  Google Scholar 

  • Tiwari S, Singh AK (2013) Variability of aerosol parameters derived from ground and satellite measurements over varanasi located in the Indo-Gangetic Basin. Aerosol Air Qual Res 13:627–638

    Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava MK, Chate DM, Padmanabhamurty B (2010) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. Int J Atmospheric Chem 62(3):193–209

    Article  CAS  Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS, Safai PD, Parmita P (2012) Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability. Nat Hazard doi: 10.1007/s11069-012-0449-1.

  • Tiwari S, Srivastava AK, Bisht DS, Parmita P, Srivastava MK, Attri SD (2013a) Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: influence of meteorology. Atmos Res 125–126:50–62

    Article  Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS, Safai PD, Parmita P (2013b) Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability. Nat Hazard 65:1745–1764

    Article  Google Scholar 

  • Tripathi SN, Dey S, Tare V, Satheesh SK (2005) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32:L08802. doi:10.1029/2005GL022515

    Google Scholar 

  • Turpin BJ, Huntzicker JJ (1995) Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos Environ 29:3527–3544

    Article  CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610

    Article  CAS  Google Scholar 

  • Turpin BJ, Liu SP, Podolske KS, Gomes MSP, Elsenrelch SJ, McMurry PH (1993) Design and evaluation of a novel diffusion separator for measuring gas/ particle distributions of semivolatile organic compounds. Environ Sci Tech 27:2441–2449

    Article  CAS  Google Scholar 

  • Turpin BJ, Saxena P, Andrews E (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos Environ 34:2983–3013

    Article  CAS  Google Scholar 

  • Venkataraman C, Reddy CK, Josson S, Reddy MS (2002) Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmos Environ 36:1979–1991

    Article  CAS  Google Scholar 

  • Viana M, Maenhaut W, Ten Brink HM, Chi X, Weijers E, Querol X, Alastuey A, Mikulski P, Vecera Z (2007) Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmos Environ 41:5972–5983

    Article  CAS  Google Scholar 

  • Watson JG, Judith C, Chow A (2002) Wintertime PM2.5 episode at the Fresno, CA, supersite. Atmos Environ 36:465–475

    Article  CAS  Google Scholar 

  • Weitkamp EA, Sage AM, Pierce JR, Donahue NM, Robinson AL (2007) Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. Environ Sci Tech 41:6969–6975

    Article  CAS  Google Scholar 

  • Weitkamp EA, Lambe AT, Donahue NM, Robinson AL (2009) Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular markers for motor vehicle exhaust. Environ Sci Tech 43: doi:10.1021/es800745x

  • Welthagen W, Schnelle-Kreis J, Zimmermann R (2003) Search criteria and rules for comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry analysis of airborne particulate matter. J Chromat 1019:233–249

    Article  CAS  Google Scholar 

  • Zhang Y, Shao M, Zhang Y, Zeng L, He L, Zhu B, Wei Y, Zhu X (2007) Source profiles of particulate organic matters emitted from cereal straw burnings. J Environ Sci 19:167–175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Grant Commission (RGNF-2011-12) New Delhi for financial support and Department of Chemistry, University of Pune and Dr B R Ambedkar University Agra for providing necessary facilities to complete this work. We are also thankful to Indian Institute Tropical Meteorology (IITM) laboratory New Delhi for analyzing the carbonaceous aerosols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Taneja.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pipal, A.S., Tiwari, S., Satsangi, P.G. et al. Sources and characteristics of carbonaceous aerosols at Agra “World heritage site” and Delhi “capital city of India”. Environ Sci Pollut Res 21, 8678–8691 (2014). https://doi.org/10.1007/s11356-014-2768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2768-0

Keywords

Navigation