, Volume 20, Issue 8, pp 5405-5415
Date: 17 Feb 2013

Physiological and biochemical defense reactions of Vicia faba L.–Rhizobium symbiosis face to chronic exposure to cyanobacterial bloom extract containing microcystins

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The presence of cyanotoxins, mainly microcystins (MCs), in surface freshwater represents a serious health risk to aquatic organisms living in the water body, as well as terrestrial animals and plants that are in contact with contaminated water. Consequently, the use of MCs contaminated water for irrigation represents a hazard for cultivated plants and could induce severe economical losses due to crops’ yield reduction. The experimental approach undertaken in this work was exposing Vicia faba seedlings (inoculated with a Rhizobium strain resistant to MCs), to water supplemented with cyanobacterial crude extract containing total microcystins at a concentration of 50 and 100 μg/L (environmental relevant concentrations of MCs dissolved in the raw irrigation water from Lalla Takerkoust Lake-Marrakesh region). After chronic MCs exposure (2 months), biological and physiological parameters (plant growth, nitrogen uptake, mineral assimilation, and oxidative defense mechanisms) were evaluated. The results obtained showed evidence that chronic exposure to cyanobacterial bloom extract containing MCs strongly affected the physiological and biological plants activities; reduction of dry matter, photosynthetic activity, nodule number, and nitrogen assimilation. At the same time, an increase of oxidative stress was observed, as deduced from a significant increase of the activities of peroxidase, catalase, polyphenoloxidase, and phenylalanine ammonia lyase in leaves, roots, and nodules of faba bean plants exposed to cyanotoxins, especially at 100 μg/L of MCs. This experimentation constitutes a simulation of the situation related to cyanotoxins chronic exposure of seedlings—plants via the contaminated irrigation water. For this reason, once should take into consideration the possibility of contamination of agricultural crops and the quality of irrigation water should be by the way monitored for cyanotoxins biohazard.

Responsible editor: Philippe Garrigues