, Volume 20, Issue 1, pp 461-468,
Open Access This content is freely available online to anyone, anywhere at any time.
Date: 22 Sep 2012

A study on the evaluations of emission factors and uncertainty ranges for methane and nitrous oxide from combined-cycle power plant in Korea

Abstract

In this research, in order to develop technology/country-specific emission factors of methane (CH4) and nitrous oxide (N2O), a total of 585 samples from eight gas-fired turbine combined cycle (GTCC) power plants were measured and analyzed. The research found that the emission factor for CH4 stood at “0.82 kg/TJ”, which was an 18 % lower than the emission factor for liquefied natural gas (LNG) GTCC “1 kg/TJ” presented by Intergovernmental Panel on Climate Change (IPCC). The result was 8 % up when compared with the emission factor of Japan which stands at “0.75 kg/TJ”. The emission factor for N2O was “0.65 kg/TJ”, which is significantly lower than “3 kg/TJ” of the emission factor for LNG GTCC presented by IPCC, but over six times higher than the default N2O emission factor of LNG. The evaluation of uncertainty was conducted based on the estimated non-CO2 emission factors, and the ranges of uncertainty for CH4 and N2O were between −12.96 and +13.89 %, and −11.43 and +12.86 %, respectively, which is significantly lower than uncertainties presented by IPCC. These differences proved that non-CO2 emissions can change depending on combustion technologies; therefore, it is vital to establish country/technology-specific emission factors.

Responsible editor: Philippe Garrigues