, Volume 18, Issue 5, pp 697-707

The human sex odds at birth after the atmospheric atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Background, aim, and scope

Ever since the discovery of the mutagenic properties of ionizing radiation, the possibility of birth sex odds shifts in exposed human populations was considered in the scientific community. Positive evidence, however weak, was obtained after the atomic bombing of Japan. We previously investigated trends in the sex odds before and after the Chernobyl Nuclear Power Plant accident. In a pilot study, combined data from the Czech Republic, Denmark, Finland, Germany, Hungary, Norway, Poland, and Sweden between 1982 and 1992 showed a downward trend in the sex odds and a significant jump in 1987, the year immediately after Chernobyl. Moreover, a significant positive association of the sex odds between 1986 and 1991 with Chernobyl fallout at the district level in Germany was observed. Both of these findings, temporality (effect after exposure) and dose response association, yield evidence of causality. The primary aim of this study was to investigate longer time periods (1950–2007) in all of Europe and in the USA with emphasis on the global atmospheric atomic bomb test fallout and on the Chernobyl accident. To obtain further evidence, we also analyze sex odds data near nuclear facilities in Germany and Switzerland.

Data and statistical methods

National gender-specific annual live births data for 39 European countries from 1975 to 2007 were compiled using the pertinent internet data bases provided by the World Health Organization, United Nations, Council of Europe, and EUROSTAT. For a synoptic re-analysis of the period 1950 to 1990, published data from the USA and from a predominantly western and less Chernobyl-exposed part of Europe were studied additionally. To assess spatial, temporal, as well as spatial–temporal trends in the sex odds and to investigate possible changes in those trends after the atomic bomb tests, after Chernobyl, and in the vicinity of nuclear facilities, we applied ordinary linear logistic regression. Region-specific and eventually changing spatial–temporal trends were analyzed using dummy variables coding for continents, countries, districts, municipalities, time periods, and appropriate spatial–temporal interactions.

Results

The predominantly western European sex odds trend together with the US sex odds trend (1950–1990 each) show a similar behavior. Both trends are consistent with a uniform reduction from 1950 to 1964, an increase from 1964 to 1975 that may be associated with delayed global atomic bomb test fallout released prior to the Partial Test Ban Treaty in 1963 and again a more or less constant decrease from 1975 to 1990. In practically all of Europe, including eastern European countries, from 1975 to 1986, and in the USA from 1975 to 2002, there were highly significant uniform downward trends in the sex odds with a reduction of 0.22% to 0.25% per 10 years. In contrast to the USA, in Europe there was a highly significant jump of the sex odds of 0.20% in the year 1987 following Chernobyl. From 1987 to 2000, the European sex odds trend reversed its sign and went upward, highly significantly so, with 0.42% per 10 years relative to the downward trend before Chernobyl. The global secular trend analyses are corroborated by the analysis of spatial–temporal sex odds trends near nuclear facilities (NF) in Germany and Switzerland. Within 35 km distance from those NF, the sex odds increase significantly in the range of 0.30% to 0.40% during NF operating time.

Conclusions

The atmospheric atomic bomb test fallout affected the human sex odds at birth overall, and the Chernobyl fallout had a similar impact in Europe and parts of Asia. The birth sex odds near nuclear facilities are also distorted. The persistently disturbed secular human sex odds trends allow the estimation of the global deficit of births in the range of several millions.

Responsible editor: Markus Hecker