Skip to main content
Log in

Large Deformation of Nitinol Under Shear Dominant Loading

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Full-field quantitative strain maps of phase transformation and plasticity in Nitinol under large shear-dominated deformation are presented. To achieve a shear-dominated deformation mode with relatively uniform stresses and strains, a shear compression specimen (SCS) geometry was utilized. Shear deformation appears to impede the development of the strain localization during phase transformation that is seen in uniaxial testing. The shear-dominant deformation of Nitinol in the plastic regime exhibits low hardening and results in the development of significant strain inhomogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM (1998) Mechanism of the shape memory effect and superelasticity. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Bhattacharya K (2004) Microstructure of Martensite: Why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    Google Scholar 

  3. Sehitoglu H, Jun J, Zhang X, Karaman I, Chumlyakov Y, Maier HJ et al (2001) Shape memory and pseudoelastic behavior of 51.5%Ni–Ti single crystals in solutionized and overaged state. Acta Mater 4917:3609–3620 doi:10.1016/S1359-6454(01)00216-6

    Article  Google Scholar 

  4. Pelton A, Duerig T, Steckel D (2004) A guide to shape memory and superelasticity in nitinol medical devices. Minim Invasive Ther Allied Technol 13:218–221 doi:10.1080/13645700410017236

    Article  Google Scholar 

  5. Rittel D, Lee S, Ravichandran G (2002) A shear-compression specimen for large strain testing. Exp Mech 421:58–64 doi:10.1007/BF02411052

    Article  Google Scholar 

  6. Dorogoy A, Rittel D (2005) Numerical validation of the shear compression specimen (SCS). Part I: quasi-static large strain testing. Exp Mech 42:167–177 doi:10.1007/BF02428190

    Article  Google Scholar 

  7. Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial–differential correction. Exp Mech 293:261–267 doi:10.1007/BF02321405

    Article  Google Scholar 

  8. Cheng P, Sutton MA, Schreier HW, McNeill SR (2002) Full-field speckle pattern image correlation with B-spline deformation function. Exp Mech 423:344–352 doi:10.1007/BF02410992

    Article  Google Scholar 

  9. Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital image correlation techniques to experimental mechanics. Exp Mech 253:232–244 doi:10.1007/BF02325092

    Article  Google Scholar 

  10. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 423:303–310 doi:10.1007/BF02410987

    Article  Google Scholar 

  11. Correlated Solutions.West Columbia, South Carolina, www.correlatedsolutions.com

  12. Berfield TA, Patel JK, Shimmin RG, Braun PV, Lambros J, Sottos NR (2007) Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp Mech 47:51–62 doi:10.1007/s11340-006-0531-2

    Article  Google Scholar 

  13. Daly S, Ravichandran G, Bhattacharya K (2007) Stress-induced martensitic transformation in thin sheets of nitinol. Acta Mater 55:3593–3600 doi:10.1016/j.actamat.2007.02.011

    Article  Google Scholar 

  14. Shaw JA, Kyriakides S (1997) On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Metall 452:683–700

    Google Scholar 

  15. Pieczyska EA, Gadaj SP, Nowacki WK, Tobushi H (2004) Thermomechanical investigations of martensitic and reverse transformations in TiNi shape memory alloy. Bull Pol Acad Sci Tech Sci 523:165–171

    Google Scholar 

  16. Schmahl WW, Khalil-Allafi J, Hasse B, Wagner M, Heckmann A, Somsen C (2004) Investigation of the phase evolution in a super-elastic NiTi shape memory alloy (50.7 at.% Ni) under extensional load with synchrotron radiation. Mater Sci Eng A 3781–2:81–85 doi:10.1016/j.msea.2003.11.081

    Google Scholar 

  17. Shaw JA, Kyriakides S (1997) Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. Int J Plast 1310:837–871 doi:10.1016/S0749-6419(97)00062-4

    Article  Google Scholar 

  18. McNaney JM, Imbeni V, Jung Y, Papadopoulos P, Ritchie RO (2003) An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mech Mater 3510:969–986 doi:10.1016/S0167-6636(02)00310-1

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Army Research Office (W911NF-04-1-0156), the National Science Foundation (DMS-0311788) and the Powell foundation. We thank Correlated Solutions, Inc. for providing the DIC correlation software used in these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Daly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daly, S., Rittel, D., Bhattacharya, K. et al. Large Deformation of Nitinol Under Shear Dominant Loading. Exp Mech 49, 225–233 (2009). https://doi.org/10.1007/s11340-008-9178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9178-5

Keywords

Navigation