, Volume 48, Issue 4, pp 451-464
Date: 06 Jun 2008

Identification of Heterogeneous Constitutive Parameters in a Welded Specimen: Uniform Stress and Virtual Fields Methods for Material Property Estimation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Local strain data obtained throughout the entire weld region encompassing both the weld nugget and heat affected zones (HAZs) are processed using two methodologies, uniform stress and virtual fields, to estimate specific heterogeneous material properties throughout the weld zone. Results indicate that (a) the heterogeneous stress–strain behavior obtained by using a relatively simple virtual fields model offers a theoretically sound approach for modeling stress–strain behavior in heterogeneous materials, (b) the local stress–strain results obtained using both a uniform stress assumption and a simplified uniaxial virtual fields model are in good agreement for strains ɛ xx < 0.025, (c) the weld nugget region has a higher hardening coefficient, higher initial yield stress and a higher hardening exponent, consistent with the fact that the steel weld is overmatched and (d) for ɛ xx > 0.025, strain localization occurs in the HAZ region of the specimen, resulting in necking and structural effects that complicate the extraction of local stress strain behavior using either of the relatively simple models.