Experimental Mechanics

, 47:7

Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures

Article

DOI: 10.1007/s11340-006-0406-6

Cite this article as:
Zhu, Y., Ke, C. & Espinosa, H.D. Exp Mech (2007) 47: 7. doi:10.1007/s11340-006-0406-6

Abstract

New materials and nanostructures with superior electro-mechanical properties are emerging in the development of novel devices. Engineering application of these materials and nanostructures requires accurate mechanical characterization, which in turn requires development of novel experimental techniques. In this paper, we review some of the existing experimental techniques suitable to investigate the mechanics of one-dimensional (1D) nanostructures. Particular emphasis is placed on techniques that allow comparison of quantities measured in the tests with predictions arising from multiscale computer simulations on a one to one basis. We begin with an overview of major challenges in the mechanical characterization of 1D nanostructures, followed by a discussion of two distinct types of experimental techniques: nanoindentation/atomic force microscopy (AFM) and in-situ electron microscopy testing. We highlight a recently developed in-situ transmission and scanning electron microscopy testing technique, for investigating the mechanics of thin films and 1D nanostructures, based on microelectromechanical systems (MEMS) technology. We finally present the coupled field (electro and mechanical) characterization of a NEMS bistable switch in-situ a scanning electron microscope (SEM).

Keywords

NanomechanicsIn-situ microscopyMEMSCarbon nanotubesNanowiresNEMS

Copyright information

© Society for Experimental Mechanics 2007

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA