Experimental Mechanics

, Volume 47, Issue 1, pp 7-24

First online:

Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures

  • Y. ZhuAffiliated withDepartment of Mechanical Engineering, Northwestern University
  • , C. KeAffiliated withDepartment of Mechanical Engineering, Northwestern University
  • , H. D. EspinosaAffiliated withDepartment of Mechanical Engineering, Northwestern University Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


New materials and nanostructures with superior electro-mechanical properties are emerging in the development of novel devices. Engineering application of these materials and nanostructures requires accurate mechanical characterization, which in turn requires development of novel experimental techniques. In this paper, we review some of the existing experimental techniques suitable to investigate the mechanics of one-dimensional (1D) nanostructures. Particular emphasis is placed on techniques that allow comparison of quantities measured in the tests with predictions arising from multiscale computer simulations on a one to one basis. We begin with an overview of major challenges in the mechanical characterization of 1D nanostructures, followed by a discussion of two distinct types of experimental techniques: nanoindentation/atomic force microscopy (AFM) and in-situ electron microscopy testing. We highlight a recently developed in-situ transmission and scanning electron microscopy testing technique, for investigating the mechanics of thin films and 1D nanostructures, based on microelectromechanical systems (MEMS) technology. We finally present the coupled field (electro and mechanical) characterization of a NEMS bistable switch in-situ a scanning electron microscope (SEM).


Nanomechanics In-situ microscopy MEMS Carbon nanotubes Nanowires NEMS