Skip to main content
Log in

Characterization and Evaluation of 64Cu-Labeled A20FMDV2 Conjugates for Imaging the Integrin αvβ6

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The integrin αvβ6 is overexpressed in a variety of aggressive cancers and serves as a prognosis marker. This study describes the conjugation, radiolabeling, and in vitro and in vivo evaluation of four chelators to determine the best candidate for 64Cu radiolabeling of A20FMDV2, an αvβ6 targeting peptide.

Procedures

Four chelators were conjugated onto PEG28-A20FMDV2 (1): 11-carboxymethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4-methanephosphonic acid (CB-TE1A1P), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and 4,4′-((3,6,10,13,16,19-hexazazbicyclo[6.6.6]ico-sane-1,8-diylbis(aza-nediyl))bis(methylene)dibenzoic acid (BaBaSar). All peptides were radiolabeled with 64Cu in ammonium acetate buffer at pH 6 and formulated to pH 7.2 in PBS for use. The radiotracers were evaluated using in vitro cell binding and internalization assays and serum stability assays. In vivo studies conducted include blocking, biodistribution, and small animal PET imaging. Autoradiography and histology were also conducted.

Results

All radiotracers were radiolabeled in good radiochemical purity (>95 %) under mild conditions (37–50 °C for 15 min) with high specific activity (0.58–0.60 Ci/μmol). All radiotracers demonstrated αvβ6-directed cell binding (>46 %) with similar internalization levels (>23 %). The radiotracers 64Cu-CB-TE1A1P-1 and 64Cu-BaBaSar-1 showed improved specificity for the αvβ6 positive tumor in vivo over 64Cu-DOTA-1 and 64Cu-NOTA-1 (+/− tumor uptake ratios—3.82 +/- 0.44, 3.82 ± 0.41, 2.58 ± 0.58, and 1.29 ± 0.14, respectively). Of the four radiotracers, 64Cu-NOTA-1 exhibited the highest liver uptake (10.83 ± 0.1 % ID/g at 4 h).

Conclusions

We have successfully conjugated, radiolabeled, and assessed the four chelates CB-TE1A1P, DOTA, NOTA, and BaBaSar both in vitro and in vivo. However, the data suggests no clear “best candidate” for the 64Cu-radiolabeling of A20FMDV2, but instead a trade-off between the different properties (e.g., stability, selectivity, pharmacokinetics, etc.) with no obvious effects of the individual chelators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Bates RC, Bellovin DI, Brown C et al (2005) Transcriptional activation of integrin β6 during the epithelial–mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest 115:339–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bruess JM, Gallo J, DeLisser HM et al (1995) Expression of the β6 integrin subunit in development, neoplasia and tissue repair suggests a role in epithelial remodeling. J Cell Sci 108:2241–2251

    Google Scholar 

  3. Maubant S, Cruet-Hennequart S, Dutoit S et al (2005) Expression of α V-associated integrin β subunits in epithelial ovarian cancer and its relation to prognosis in patients treated with platinum-based regimens. J Mol Histol 36:119–129

    Article  CAS  PubMed  Google Scholar 

  4. Sipos B, Hahn D, Carceller A et al (2004) Immunohistochemical screening for β6-integrin subunit expression in adenocarcinomas using a novel monoclonal antibody reveals strong up-regulation in pancreatic ductal adenocarcinomas in vivo and in vitro. Histopathology 45:226–236

    Article  CAS  PubMed  Google Scholar 

  5. Saha A, Ellison D, Thomas GJ et al (2010) High-resolution in vivo imaging of breast cancer by targeting the pro-invasive integrin αvβ6. J Pathol 222:52–63

    CAS  PubMed  Google Scholar 

  6. Hazelbag S, Kenter GG, Gorter A et al (2007) Overexpression of the αvβ6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol 212:316–324

    Article  CAS  PubMed  Google Scholar 

  7. Zhang ZY, Xu KS, Wang JS et al (2008) Integrin ανβ6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol 20:61–66

    Article  Google Scholar 

  8. Li X, Yang Y, Hu Y et al (2003) αvβ6-Fyn signaling promotes oral cancer progression. J Biol Chem 278:41646–41653

    Article  CAS  PubMed  Google Scholar 

  9. Yang G-Y, Xu K-S, Pan Z-Q et al (2008) Integrin alphavbeta6 mediates the potential for colon cancer cells to colonize in and metastasize to the liver. Cancer Sci 99:879–887

    Article  CAS  PubMed  Google Scholar 

  10. Elayadi AN, Samli KN, Prudkin L et al (2007) A peptide selected by biopanning identifies the integrin αvβ6 as a prognostic biomarker for nonsmall cell lung cancer. Cancer Res 67:5889–5895

    Article  CAS  PubMed  Google Scholar 

  11. Gagnon MKJ, Hausner SH, Marik J et al (2009) High-throughput in vivo screening of targeted molecular imaging agents. Proc Natl Acad Sci U S A 106:17904–17909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hackel BJ, Kimura RH, Miao Z, et al. (2013) 18F-Fluorobenzoate–Labeled Cystine Knot Peptides for PET Imaging of Integrin αvβ6. J Nucl Med

  13. Aina OH, Sroka TC, Chen M-L, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66:184–199

    Article  CAS  PubMed  Google Scholar 

  14. Hausner SH, DiCara D, Marik J et al (2007) Use of a peptide derived from foot-and-mouth disease virus for the noninvasive imaging of human cancer: generation and evaluation of 4-[18F]fluorobenzoyl A20FMDV2 for in vivo imaging of integrin alphavbeta6 expression with positron emission tomography. Cancer Res 67:7833–7840

    Article  CAS  PubMed  Google Scholar 

  15. Hausner SH, Abbey CK, Bold RJ et al (2009) Targeted in vivo imaging of integrin alphavbeta6 with an improved radiotracer and its relevance in a pancreatic tumor model. Cancer Res 69:5843–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hausner SH, Kukis DL, Gagnon MK et al (2009) Evaluation of [64Cu]Cu-DOTA and [64Cu]Cu-CB-TE2A chelates for targeted positron emission tomography with an alphavbeta6-specific peptide. Mol Imaging 8:111–121

    CAS  PubMed  Google Scholar 

  17. Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957–980

    Article  CAS  PubMed  Google Scholar 

  18. Jiang M, Ferdani R, Shokeen M, Anderson CJ (2013) Comparison of two cross-bridged macrocyclic chelators for the evaluation of 64Cu-labeled-LLP2A, a peptidomimetic ligand targeting VLA-4-positive tumors. Nucl Med Biol 40:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cai H, Li Z, Huang CW, et al. (2010) Evaluation of copper-64 labeled AmBaSar conjugated cyclic RGD peptide for improved microPET imaging of integrin αvβ3 expression. Bioconjug Chem 21:1417–1424

    Google Scholar 

  20. Liu S, Li Z, Yap LP, Huang CW et al (2011) Efficient preparation and biological evaluation of a novel multivalency bifunctional chelator for 64Cu radiopharmaceuticals. Chemistry 17:10222–10225

    Article  CAS  PubMed  Google Scholar 

  21. Hausner SH, Carpenter RD, Bauer N, Sutcliffe JL (2013) Evaluation of an integrin alphavbeta6-specific peptide labeled with [18F]fluorine by copper-free, strain-promoted click chemistry. Nucl Med Biol 40:233–239

    Article  CAS  PubMed  Google Scholar 

  22. Nemeth JA, Nakada MT, Trikha M et al (2007) Alpha-v integrins as therapeutic targets in oncology. Cancer Invest 25:632–646

    Article  CAS  PubMed  Google Scholar 

  23. Guo Y, Ferdani R, Anderson CJ (2012) Preparation and biological evaluation of (64)Cu labeled Tyr(3)-octreotate using a phosphonic acid-based cross-bridged macrocyclic chelator. Bioconjug Chem 23:1470–1477

    Article  CAS  PubMed  Google Scholar 

  24. Anderson CJ, Ferdani R (2009) Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 24

  25. Anderson CJ (2001) Metabolism of radiometal-labeled proteins and peptides: what are the real radiopharmaceuticals in vivo? Cancer Biother Radiopharm 16:451–455

    Article  CAS  PubMed  Google Scholar 

  26. Novak-Hofer I, Zimmermann K, Schubiger PA (2001) Peptide linkers lead to modification of liver metabolism and improved tumor targeting of copper-67-labeled antibody fragments. Cancer Biother Radiopharm 16:469–481

    Article  CAS  PubMed  Google Scholar 

  27. Zeglis BM, Lewis JS (2011) A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Trans 40:6168–6195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hausner SH, Marik J, Gagnon MKJ, Sutcliffe JL (2008) In vivo positron emission tomography (PET) imaging with an αvβ6 specific peptide radiolabeled using 18F-“click” chemistry: evaluation and comparison with the corresponding 4-[18F]fluorobenzoyl- and 2-[18F]fluoropropionyl-peptides. J Med Chem 51:5901–5904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DeNardo SJ, Liu R, Albrecht H et al (2009) 111In-LLP2A-DOTA polyethylene glycol-targeting α4β1 integrin: comparative pharmacokinetics for imaging and therapy of lymphoid malignancies. J Nucl Med 50:625–634

    Article  CAS  PubMed  Google Scholar 

  30. Haubner R, Decristoforo C (2009) Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci 14:872–886

    Article  CAS  Google Scholar 

  31. Nguyen K, Parry JJ, Rogers BE, Anderson CJ (2012) Evaluation of copper-64-labeled somatostatin agonists and antagonist in SSTr2-transfected cell lines that are positive and negative for p53: implications for cancer therapy. Nucl Med Biol 39:187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hausner SH, Bauer N, Sutcliffe JL (2013) In vitro and in vivo evaluation of the effects of aluminum [18F]fluoride radiolabeling on an integrin avb6-specific peptide. Nucl Med Biol 41:43–50

    Article  PubMed  Google Scholar 

  33. Bass LA, Lanahan MV, Duncan JR et al (1998) Identification of the soluble in vivo metabolites of indium-111-diethylenetriaminepentaacetic acid-D-Phe1-octreotide. Bioconjug Chem 9:192–200

    Article  CAS  PubMed  Google Scholar 

  34. Breeman WAP, Kwekkeboom DJ, Kooij PPM et al (1995) Effect of dose and specific activity on tissue distribution of indium-111-pentetreotide in rats. J Nucl Med 36:623–627

    CAS  PubMed  Google Scholar 

  35. Lewis JS, Lewis MR, Cutler PD et al (1999) Radiotherapy and dosimetry of 64Cu-TETA-Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model. Clin Cancer Res 5:3608–3616

    CAS  PubMed  Google Scholar 

  36. Smith SV (2004) Molecular imaging with copper-64. J Inorg Biochem 98:1874–1901

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge D.L. Kukis, L. Planutyte, J.Y. Fung, M. Jiang, and S.H. Hausner for their advice and technical support.

Grant Support

This research was supported by the Office of Science, United States Department of Energy, DE-SC0002061 and NCI 5R01 CA093375.

Conflict of Interest

No conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Sutcliffe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L.Y., Bauer, N., Knight, L.M. et al. Characterization and Evaluation of 64Cu-Labeled A20FMDV2 Conjugates for Imaging the Integrin αvβ6 . Mol Imaging Biol 16, 567–577 (2014). https://doi.org/10.1007/s11307-013-0717-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0717-9

Key words

Navigation