, Volume 16, Issue 2, pp 224-234
Date: 17 Aug 2013

A Titratable Two-Step Transcriptional Amplification Strategy for Targeted Gene Therapy Based on Ligand-Induced Intramolecular Folding of a Mutant Human Estrogen Receptor

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Purpose

The efficacy and safety of cardiac gene therapy depend critically on the level and the distribution of therapeutic gene expression following vector administration. We aimed to develop a titratable two-step transcriptional amplification (tTSTA) vector strategy, which allows modulation of transcriptionally targeted gene expression in the myocardium.

Procedures

We constructed a tTSTA plasmid vector (pcTnT-tTSTA-fluc), which uses the cardiac troponin T (cTnT) promoter to drive the expression of the recombinant transcriptional activator GAL4-mER(LBD)-VP2, whose ability to transactivate the downstream firefly luciferase reporter gene (fluc) depends on the binding of its mutant estrogen receptor (ERG521T) ligand binding domain (LBD) to an ER ligand such as raloxifene. Mice underwent either intramyocardial or hydrodynamic tail vein (HTV) injection of pcTnT-tTSTA-fluc, followed by differential modulation of fluc expression with varying doses of intraperitoneal raloxifene prior to bioluminescence imaging to assess the kinetics of myocardial or hepatic fluc expression.

Results

Intramyocardial injection of pcTnT-tTSTA-fluc followed by titration with intraperitoneal raloxifene led to up to tenfold induction of myocardial fluc expression. HTV injection of pcTnT-tTSTA-fluc led to negligible long-term hepatic fluc expression, regardless of the raloxifene dose given.

Conclusions

The tTSTA vector strategy can effectively modulate transgene expression in a tissue-specific manner. Further refinement of this strategy should help maximize the benefit-to-risk ratio of cardiac gene therapy.