Skip to main content

Advertisement

Log in

Comparison of 18F-labeled CXCR4 antagonist peptides for PET imaging of CXCR4 expression

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

An Erratum to this article was published on 21 May 2013

Abstract

Purpose

CXCR4 is overexpressed on tumor cells from many types of human cancers. A high level of CXCR4 expression often correlates with poor prognosis, chemotherapy resistance, and metastasis. The development of CXCR4-specific radiotracers for positron emission tomography (PET) imaging will allow in vivo evaluation of receptor expression level for diagnosis or therapeutic evaluation.

Procedures

Two new 18F-labeled radiotracers based on an Ac-TC14012 peptide, [18F]FP-Ac-TC14012 and [18F]FB-Ac-TC14012, were synthesized and characterized. The affinities of the 2-fluoropropionate (FP)-conjugated or 4-fluorobenzoate (FB)-conjugated peptides to CXCR4-transfected Chinese hamster ovarian (CHO) cells were evaluated in a competitive binding assay with [125I]CXCL12 radioligand. The cell uptake and retention of [18F]FP-labeled and [18F]FB-labeled peptides were measured. The tumor targetability and pharmacokinetics of these two tracers were also evaluated by microPET imaging and biodistribution studies.

Results

The labeled peptides retained high binding affinity to CXCR4 and showed much higher uptake in CXCR4-positive CHO cells than in CXCR4-negative cells in vitro. The smaller and more hydrophilic [18F]FP prosthetic group resulted in higher affinity and lower nonspecific cell uptake compared to the [18F]FB-labeled peptide. Both radiotracers showed much higher accumulation in CXCR4-positive than CXCR4-negative tumor xenografts in mice and allowed clear visualization of CXCR4 expression by PET. Among the two, [18F]FP-Ac-TC14012 showed higher tumor uptake and better tumor-to-background contrast. Unlike their N-terminal 4-F-benzoate analogs, these two tracers had minimal blood retention, likely due to reduced red blood cell binding. Metabolic organs, such as the liver and kidney, also showed high uptake. When blocked with low-dose cold peptide (10 μg), the tumor uptake was significantly increased, most likely due to the increased concentration in blood circulation, as evidenced by decreased liver uptake.

Conclusion

These results demonstrate that the [18F]FP-labeled Ac-TC14012 peptide with high tumor uptake, low nonspecific binding, and good tumor-to-background contrast promises [18F]FP-Ac-TC14012 as a PET tracer for in vivo PET imaging of CXCR4 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14:171–179

    Article  PubMed  CAS  Google Scholar 

  2. Zhou Y, Larsen PH, Hao C, Yong VW (2002) CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277:49481–49487

    Article  PubMed  CAS  Google Scholar 

  3. Corcione A, Ottonello L, Tortolina G et al (2000) Stromal cell-derived factor-1 as a chemoattractant for follicular center lymphoma B cells. J Natl Cancer Inst 92:628–635

    Article  PubMed  CAS  Google Scholar 

  4. Koshiba T, Hosotani R, Miyamoto Y et al (2000) Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 6:3530–3535

    PubMed  CAS  Google Scholar 

  5. Scotton CJ, Wilson JL, Scott K et al (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62:5930–5938

    PubMed  CAS  Google Scholar 

  6. Hwang JH, Hwang JH, Chung HK et al (2003) CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J Clin Endocrinol Metab 88:408–416

    Article  PubMed  CAS  Google Scholar 

  7. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  8. Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757

    PubMed  CAS  Google Scholar 

  9. Wald O, Shapira OM, Izhar U (2013) CXCR4/CXCL12 axis in non-small cell lung cancer (NSCLC) pathologic roles and therapeutic potential. Theranostics 3:26–33

    Article  PubMed  CAS  Google Scholar 

  10. Werner L, Guzner-Gur H, Dotan I (2013) Involvement of CXCR4/CXCR7/CXCL12 interactions in inflammatory bowel disease. Theranostics 3:40–46

    Article  PubMed  CAS  Google Scholar 

  11. Ratajczak MZ, Serwin K, Schneider G (2013) Innate immunity derived factors as external modulators of the CXCL12–CXCR4 axis and their role in stem cell homing and mobilization. Theranostics 3:3–10

    Article  PubMed  CAS  Google Scholar 

  12. Katsumoto K, Kume S (2013) The role of CXCL12–CXCR4 signaling pathway in pancreatic development. Theranostics 3:11–17

    Article  PubMed  CAS  Google Scholar 

  13. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W (2003) Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425:307–311

    Article  PubMed  CAS  Google Scholar 

  14. Helbig G, Christopherson KW, Bhat-Nakshatri P et al (2003) NF-κ B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278:21631–21638

    Article  PubMed  CAS  Google Scholar 

  15. Azab AK, Runnels JM, Pitsillides C et al (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113:4341–4351

    Article  PubMed  CAS  Google Scholar 

  16. Kurtova AV, Tamayo AT, Ford RJ, Burger JA (2009) Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood 113:4604–4613

    Article  PubMed  CAS  Google Scholar 

  17. Peled A, Tavor S (2013) Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 3:34–39

    Article  PubMed  CAS  Google Scholar 

  18. Zhang S, Qi L, Li M et al (2008) Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res 27:62

    Article  PubMed  CAS  Google Scholar 

  19. Yoon Y, Liang Z, Zhang X et al (2007) CXC chemokine receptor-4 antagonist blocks both growth of primary tumor and metastasis of head and neck cancer in xenograft mouse models. Cancer Res 67:7518–7524

    Article  PubMed  CAS  Google Scholar 

  20. Weiss I, Jacobson O, Kiesewetter D et al (2012) Positron emission tomography imaging of tumors expressing the human chemokine receptor CXCR4 in mice with the use of 64Cu-AMD3100. Mol Imaging Biol 14:106–114

    Article  PubMed  Google Scholar 

  21. De Silva RA, Peyre K, Pullambhatla M, Fox JJ, Pomper MG, Nimmagadda S (2011) Imaging CXCR4 expression in human cancer xenografts: evaluation of monocyclam 64Cu-AMD3465. J Nucl Med 52:986–993

    Article  PubMed  Google Scholar 

  22. Jacobson O, Weiss ID, Szajek L, Farber JM, Kiesewetter DO (2009) 64Cu-AMD3100—a novel imaging agent for targeting chemokine receptor CXCR4. Biorg Med Chem 17:1486–1493

    Article  CAS  Google Scholar 

  23. Nimmagadda S, Pullambhatla M, Stone K, Green G, Bhujwalla ZM, Pomper MG (2010) Molecular imaging of CXCR4 receptor expression in human cancer xenografts with [64Cu]AMD3100 positron emission tomography. Cancer Res 70:3935–3944

    Article  PubMed  CAS  Google Scholar 

  24. Hennrich U, Seyler L, Schäfer M et al (2012) Synthesis and in vitro evaluation of 68Ga-DOTA-4-FBn-TN14003, a novel tracer for the imaging of CXCR4 expression. Bioorg Med Chem 20:1502–1510

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson O, Weiss ID, Kiesewetter DO, Farber JM, Chen X (2010) PET of tumor CXCR4 expression with 4-18F-T140. J Nucl Med 51:1796–1804

    Article  PubMed  CAS  Google Scholar 

  26. Jacobson OWI, Szajek LP, Niu G, Ma Y, Kiesewetter DO, Farber JM, Chen X (2011) PET imaging of CXCR4 using copper-64 labeled peptide antagonist. Theranostics 1:251–262

    Article  PubMed  CAS  Google Scholar 

  27. Jacobson O, Weiss ID, Szajek LP et al (2012) Improvement of CXCR4 tracer specificity for PET imaging. J Control Release 157:216–223

    Article  PubMed  CAS  Google Scholar 

  28. Demmer O, Gourni E, Schumacher U, Kessler H, Wester H-J (2011) PET Imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem 6:1789–1791

    Article  PubMed  CAS  Google Scholar 

  29. Demmer O, Dijkgraaf I, Schumacher U et al (2011) Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J Med Chem 54:7648–7662

    Article  PubMed  CAS  Google Scholar 

  30. Tamamura H, Omagari A, Oishi S et al (2000) Pharmacophore identification of a specific CXCR4 inhibitor, T140, leads to development of effective anti-HIV agents with very high selectivity indexes. Bioorg Med Chem Lett 10:2633–2637

    Article  PubMed  CAS  Google Scholar 

  31. Tamamura H, Omagari A, Hiramatsu K et al (2001) Development of specific CXCR4 inhibitors possessing high selectivity indexes as well as complete stability in serum based on an anti-HIV peptide T140. Bioorg Med Chem Lett 11:1897–1902

    Article  PubMed  CAS  Google Scholar 

  32. Tamamura H, Hiramatsu K, Mizumoto M et al (2003) Enhancement of the T140-based pharmacophores leads to the development of more potent and bio-stable CXCR4 antagonists. Org Biomol Chem 1:3663–3669

    Article  PubMed  CAS  Google Scholar 

  33. Tamamura H, Hiramatsu K, Kusano S et al (2003) Synthesis of potent CXCR4 inhibitors possessing low cytotoxicity and improved biostability based on T140 derivatives. Org Biomol Chem 1:3656–3662

    Article  PubMed  CAS  Google Scholar 

  34. Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjug Chem 22:2415–2422

    Article  PubMed  CAS  Google Scholar 

  35. Kiesewetter DO, Jacobson O, Lang L, Chen X (2011) Automated radiochemical synthesis of [18F]FBEM: a thiol reactive synthon for radiofluorination of peptides and proteins. Appl Radiat Isot 69:410–414

    Article  PubMed  CAS  Google Scholar 

  36. Wong ML, Xin WW, Duman RS (1996) Rat LCR1: cloning and cellular distribution of a putative chemokine receptor in brain. Mol Psychiatr 1:133–140

    CAS  Google Scholar 

  37. Lazarini F, Casanova P, Tham TN et al (2000) Differential signalling of the chemokine receptor CXCR4 by stromal cell-derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes. Eur J Neurosci 12:117–125

    Article  PubMed  CAS  Google Scholar 

  38. Lavi E, Strizki JM, Ulrich AM et al (1997) CXCR-4 (fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am J Pathol 151:1035–1042

    PubMed  CAS  Google Scholar 

  39. Kuil J, Buckle T, Yuan H et al (2011) Synthesis and evaluation of a bimodal CXCR4 antagonistic peptide. Bioconjug Chem 22:859–864

    Article  PubMed  CAS  Google Scholar 

  40. Moepps B, Frodl R, Rodewald H-R, Baggiolini M, Gierschik P (1997) Two murine homologues of the human chemokine receptor CXCR4 mediating stromal cell-derived factor 1α activation of Gi2 are differentially expressed in vivo. Eur J Immunol 27:2102–2112

    Article  PubMed  CAS  Google Scholar 

  41. Hanaoka H, Mukai T, Tamamura H et al (2006) Development of a 111In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors. Nucl Med Biol 33:489–494

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) for the funding support. This work was performed while X-X Zhang held a National Research Council Research Associateship Award at NIH/NIBIB.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dale O. Kiesewetter or Xiaoyuan Chen.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XX., Sun, Z., Guo, J. et al. Comparison of 18F-labeled CXCR4 antagonist peptides for PET imaging of CXCR4 expression. Mol Imaging Biol 15, 758–767 (2013). https://doi.org/10.1007/s11307-013-0640-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0640-0

Key words

Navigation