Molecular Imaging and Biology

, Volume 12, Issue 4, pp 394–405

Fluorescence Imaging and Whole-Body Biodistribution of Near-Infrared-Emitting Quantum Dots after Subcutaneous Injection for Regional Lymph Node Mapping in Mice

Authors

  • Emilie Pic
    • Centre de Recherche en Automatique de Nancy—Nancy-University—CNRS—Centre Alexis Vautrin
  • Thomas Pons
    • Laboratoire Photons et MatièreCNRS UPRA0005, ESPCI
  • Lina Bezdetnaya
    • Centre de Recherche en Automatique de Nancy—Nancy-University—CNRS—Centre Alexis Vautrin
  • Agnès Leroux
    • Department of PathologyCentre Alexis Vautrin
  • François Guillemin
    • Centre de Recherche en Automatique de Nancy—Nancy-University—CNRS—Centre Alexis Vautrin
  • Benoît Dubertret
    • Laboratoire Photons et MatièreCNRS UPRA0005, ESPCI
    • Centre de Recherche en Automatique de Nancy—Nancy-University—CNRS—Centre Alexis Vautrin
Research Article

DOI: 10.1007/s11307-009-0288-y

Cite this article as:
Pic, E., Pons, T., Bezdetnaya, L. et al. Mol Imaging Biol (2010) 12: 394. doi:10.1007/s11307-009-0288-y

Abstract

Purpose

This study compares fluorescence imaging to mass spectroscopy (inductively coupled plasma–mass spectroscopy, ICP–MS) for detection of quantum dots (QDs) in sentinel lymph node (LN) mapping of breast cancer.

Procedures

We study the accumulation of near-infrared-emitting QDs into regional LNs and their whole-body biodistribution in mice after subcutaneous injection, using in vivo fluorescence imaging and ex vivo elemental analysis by ICP–MS.

Results

We show that the QD accumulation in regional LNs is detectable by fluorescence imaging as early as 5 min post-delivery. Their concentration reaches a maximum at 4 h then decreases over a 10-day observation period. These data are confirmed by ICP–MS. The QD uptake in other organs, assessed by ICP–MS, increases steadily over time; however, its overall level remains rather low.

Conclusions

Fluorescence imaging can be used as a non-invasive alternative to ICP–MS to follow the QD accumulation kinetics into regional LNs.

Key words

Quantum dotsLymph nodesNear-infrared fluorescence imagingMass spectroscopyBiodistribution

Abbreviations

% ID

Percentage of injected dose

Abs

Absorbance

ALN

Axillary lymph node

ALND

Axillary lymph node dissection

AU

Arbitrary unit

DLS

Dynamic light scattering

DPPE

Dipalmitoyl phosphotidylethanolamine

H&E

Hematoxylin and eosin

HD

Hydrodynamic diameter

ICP–AES

Inductively coupled plasma–atomic emission spectroscopy

ICP–MS

Inductively coupled plasma–mass spectroscopy

i.v.

Intravenous

LALN

Left axillary lymph node

LED

Light-emitting diode

LLTLN

Left lateral thoracic lymph node

LN

Lymph node

LTLN

Lateral thoracic lymph node

Me

Methyl ether

microPET

Micro-positron emission tomography

NIR

Near-infrared

PBS

Phosphate buffered saline

PEG

Polyethylene glycol

PL

Photoluminescence

QD

Quantum dot

RALN

Right axillary lymph node

RLTLN

Right lateral thoracic lymph node

ROI

Region of interest

s.c.

Subcutaneous

SD

Standard deviation

SLN

Sentinel lymph node

SLNB

Sentinel lymph node biopsy

TEM

Transmission electron microscopy

TOP

Trioctylphosphine

Copyright information

© Academy of Molecular Imaging 2009