Skip to main content
Log in

MYB diplotypes at the color locus affect the ratios of tri/di-hydroxylated and methylated/non-methylated anthocyanins in grape berry skin

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Color variation in grape skin is mainly determined by the quantity and composition of anthocyanins. Anthocyanin quantities are mainly determined by the myeloblastosis (MYB) diplotypes at the color locus. We investigated whether MYB diplotypes also control the anthocyanin composition. Using a population derived from an interspecific hybrid (Vitis labruscana × Vitis vinifera) cross, we performed quantitative trait locus (QTL) analyses for the ratios of tri/di-hydroxylated and methylated/non-methylated anthocyanins. We detected the color locus on LG2 as a major QTL for the ratio of tri/di-hydroxylated anthocyanins. We also found two major QTLs, the color locus on LG2 and a region close to the anthocyanin O-methyltransferase (AOMT) locus on LG1, for the ratio of methylated/non-methylated anthocyanins. Using the same population and a population from another interspecific hybrid cross, we investigated the relationship between the genotypes of the markers closest to the major QTLs, the ratios of tri/di-hydroxylated and methylated/non-methylated anthocyanins, and the expression levels of the genes for flavonoid 3′,5′-hydroxylase (F3'5'H), flavonoid 3′-hydroxylase (F3'H), and AOMT. We suggest that MYB diplotypes at the color locus affect the ratio of tri/di-hydroxylated anthocyanins through trans-regulation of F3'5'H/F3'H expression ratio. We also suggest that MYB diplotypes and the AOMT genotypes affect the ratio of methylated/non-methylated anthocyanins through the regulation of AOMT expression. Our findings provide new knowledge about the genetic control of anthocyanin composition and contribute to a better understanding of the genetic mechanisms that control grape skin color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y (2008) Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theor Appl Genet 117:1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Azuma A, Kobayashi S, Goto-Yamamoto N, Shiraishi M, Mitani N, Yakushiji H, Koshita Y (2009) Color recovery in berries of grape (Vitis vinifera L.) ‘Benitaka’, a bud sport of ‘Italia’, is caused by a novel allele at the VvmybA1 locus. Plant Sci 176:470–478

    Article  CAS  Google Scholar 

  • Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S (2011) Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis × labruscana grapes. Theor Appl Genet 122:1427–1438

    Article  PubMed  Google Scholar 

  • Ban Y, Mitani N, Hayashi T, Sato A, Azuma A, Kono A, Kobayashi S (2014) Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica. doi:10.1007/s10681-014-1087-3

    Google Scholar 

  • Bayo-Canha A, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L (2012) Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny. Euphytica 186:393–407

    Article  CAS  Google Scholar 

  • Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castellarin SD, Gaspero GD (2007) Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:46

    Article  PubMed Central  PubMed  Google Scholar 

  • Castellarin SD, Gaspero GD, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deng JZ, Qu HG (1996) Overview of anthocyanins in Vitis. Sino-Overseas Grapevine Wine 2:25–27

    Google Scholar 

  • Falginella L, Castellarin SD, Testolin R, Gambetta GA, Morgante M, Gaspero GD (2010) Expansion and subfunctionalisation of flavonoid 3′,5′-hydroxylases in the grapevine lineage. BMC Genomics 11:562

    Article  PubMed Central  PubMed  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fournier-Level A, Lacombe T, Le Cunff L, Boursiquot JM, This P (2010) Evolution of the VvMybA gene family, the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.). Heredity 104:351–362

    Article  CAS  PubMed  Google Scholar 

  • Fournier-Level A, Hugueney P, Verriès C, This P, Ageorges A (2011) Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol 11:179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo Y, Qiu LJ (2013) Allele-specific marker development and selection efficiencies for both flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes in soybean subgenus soja. Theor Appl Genet 126:1445–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackman RL, Smith JL (1996) Anthocyanins and betalains. In: Hendry GAF, Houghton JD (eds) Natural food colorants, 2nd edn. Chapman & Hall, London, pp 244–309

    Chapter  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2006) Expression of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci 170:61–69

    Article  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2005) Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin-color mutants. J Jpn Soc Hort Sci 74:196–203

    Article  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids; a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Yang C, Jun Yang J, Wu B, Wang L, Cheng J, Li S (2009) Inheritance of anthocyanins in berries of Vitis vinifera grapes. Euphytica 167:113–125

    Article  CAS  Google Scholar 

  • Lijavetzky D, Ruiz-Garcia L, Cabezas JA, de Andres MT, Bravo G, Ibanez A, Carreno J, Cabello F, Ibanez J, Martinez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Gen Genom 276:427–435

    Article  CAS  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreau C, Ambrose MJ, Turner L, Hill L, Noel Ellis TH, Hofer MI (2012) The b gene of pea encodes a defective flavonoid 3′,5′-hydroxylase, and confers pink flower color. Plant Physiol 159:759–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sarni P, Fulcrand H, Souillol V, Souquet JM, Cheynier V (1995) Mechanism of anthocyanin degradation in grape must-like model solutions. J Sci Food Agric 69:385–391

    Article  CAS  Google Scholar 

  • Shiraishi M, Yamada M, Mitani N, Ueno T (2007) A rapid determination method for anthocyanin profiling in grape genetic resources. J Jpn Soc Hort Sci 76:28–35

    Article  CAS  Google Scholar 

  • Song S, Hernandez MM, Provedo I, Menendez CM (2014) Segregation and associations of enological and agronomic traits in Graciano × Tempranillo wine grape progeny (Vitis vinifera L.). Euphytica 195:259–277

    Article  Google Scholar 

  • This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730

    Article  PubMed  Google Scholar 

  • van Ooijen JW (2006) JoinMap®4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • van Ooijen JW (2009) MapQTL®6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B.V, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  CAS  PubMed  Google Scholar 

  • Yakushiji H, Kobayashi S, Goto-Yamamoto N, Jeong ST, Sueta T, Mitani N, Azuma A (2006) A skin color mutation of grapevine, from black-skinned ‘Pinot Noir’ to white-skinned ‘Pinot Blanc’ is caused by the deletion of the functional VvmybA1 allele. Biosci Biotechnol Biochem 70:1506–1508

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884–915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tamami Nakasumi and Junko Azuma (NIFTS) for technical assistance. This study was supported in part by a grant from the research program “Development of mitigation and adaptation techniques to global warming in the sectors of agriculture, forestry, and fisheries, C-3-2030” provided by the Ministry of Agriculture, Forestry and Fisheries of Japan.

Data archiving statement

Parental and consensus linkage maps for population A (line ‘693’) used in this study were published previously (Ban et al. 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akifumi Azuma.

Additional information

Communicated by A. M. Dandekar

This article is part of the Topical Collection on Gene Expression

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLS 26 kb)

Table S2

(XLS 25 kb)

Table S3

(XLS 26 kb)

Table S4

(XLS 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azuma, A., Ban, Y., Sato, A. et al. MYB diplotypes at the color locus affect the ratios of tri/di-hydroxylated and methylated/non-methylated anthocyanins in grape berry skin. Tree Genetics & Genomes 11, 31 (2015). https://doi.org/10.1007/s11295-015-0855-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0855-0

Keywords

Navigation