Skip to main content
Log in

Genetic characterization of chestnut (Castanea sativa Mill.) orchards and traditional nut varieties in El Bierzo, a glacial refuge and major cultivation site in northwestern Spain

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

This paper presents a detailed genetic study of Castanea sativa in El Bierzo, a major nut production region with interesting features. It is located within a glacial refuge at one extreme of the distribution area (northwest Spain); it has a centenary tradition of chestnut management; and more importantly, it shows an unusual degree of genetic isolation. Seven nuclear microsatellite markers were selected to analyze the genetic variability and structure of 169 local trees grafted for nut production. We analyzed in the same manner 62 local nuts. The selected loci were highly discriminant for the genotypes studied, giving a combined probability of identity of 6.1 × 10−6. An unprecedented density of trees was sampled for this project over the entire region, and nuts were collected representing 18 cultivars marketed by local producers. Several instances of misclassification by local growers were detected. Fixation index estimates and analysis of molecular variance (AMOVA) data are supportive of an unexpectedly high level of genetic differentiation in El Bierzo, larger than that estimated in a previous study with broader geographical scope but based on limited local sampling (Pereira-Lorenzo et al., Tree Genet Genomes 6: 701–715, 2010a). Likewise, we have determined that clonality due to grafting had been previously overestimated. In line with these observations, no significant spatial structure was found using both a model-based Bayesian procedure and Mantel’s tests. Taken together, our results evidence the need for more fine-scale genetic studies if conservation strategies are to be efficiently improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bagnoli F, Vendramin GG, Buonamici A, Doulis AG, Gonzalez-Martinez SC, La Porta N, Magri D, Radsi P, Sebastiani F, Fineschi S (2009) Is Cupressus sempervirens native in Italy? An answer from genetic and palaeobotanical data. Mol Ecol 18:2276–2286. doi:10.1111/j.1365-294X.2009.04182.x

    Article  CAS  PubMed  Google Scholar 

  • Barreneche T, Casasoli M, Russell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108:558–566. doi:10.1007/s00122-003-1462-2

    Article  CAS  PubMed  Google Scholar 

  • Beghé D, Ganino T, Dall’Asta C, Silvanini A, Cirlini M, Fabbri A (2013) Identification and characterization of ancient Italian chestnut using nuclear microsatellite markers. Sci Hortic 164:50–57. doi:10.1016/j.scienta.2013.09.009

    Article  Google Scholar 

  • Boccacci P, Akkak A, Marinoni DT, Bounous G, Botta R (2004) Typing european chestnut (Castanea sativa Mill.) cultivars using oak simple sequence repeat markers. Hortic Sci 39:1212–1216.

  • Brown AHD, Spillane C (1999) Implementing core collections. Principles, procedures, progress, problems, promise. In: Johnson RC, Hodgkin T (eds) Core collections for today and tomorrow. IPGRI, Rome, pp 1–9

    Google Scholar 

  • Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241. doi:10.1046/j.1471-8286.2003.00410.x

    Article  CAS  Google Scholar 

  • Casasoli M, Derory J, Morera-Dutrey C, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533–546. doi:10.1534/genetics.105.048439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chakraborty R, De Andrade M, Daiger SP, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing and their implications in forensic applications. Ann Hum Genet 56:455–457. doi:10.1111/j.1469-1809.1992.tb01128.x

    Article  Google Scholar 

  • Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J (2013) Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol 30:1224–1228. doi:10.1093/molbev/mst028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veget Hist Archaeobot 13:161–179. doi:10.1007/s00334-004-0038-7

    Article  Google Scholar 

  • Corander J, Sirén J, Arjas E (2008) Bayesian spatial modeling of genetic population structure. Comput Stat 23:111–129. doi:10.1007/s00180-007-0072-x

    Article  Google Scholar 

  • Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8:e1000294. doi:10.1371/journal.pbio.1000294

    Article  PubMed Central  PubMed  Google Scholar 

  • Earl D, von Holdt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. doi:10.1038/nrg1348

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite version 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

    Article  Google Scholar 

  • Forneck A (2005) Plant breeding: clonality. A concept for stability and variability during vegetative propagation. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 66. Springer, Berlin Heidelberg, pp 164–183

    Chapter  Google Scholar 

  • Gobbin D, Hohl L, Conza L, Jermini M, Gessler C, Conedera M (2007) Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland. Genome 50:1089–1103. doi:10.1139/G07-086

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT: a computer program to calculate F-statistics. J Hered 86:485–486.

  • Guo X, Elston RC (1999) Linkage information content of polymorphic genetic markers. Hum Hered 49:112–118. doi:10.1159/000022855

    Article  CAS  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. doi:10.1111/j.1755-0998.2009.02591.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L et al (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci U S A 105:5326–5331. doi:10.1073/pnas.0800607105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veget Hist Archaeobot 13:145–160. doi:10.1007/s00334-004-0041-z

    Article  Google Scholar 

  • Kremer A, Abbott A, Carlson J, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG (2012) Genomics of Fagaceae. Tree Genet Genomes 8:583–610. doi:10.1007/s11295-012-0498-3

    Article  Google Scholar 

  • Lang P, Dane F, Kubisiak TL, Huang H (2007) Molecular evidence for an Asian origin and a unique westward migration of species in the genus Castanea via Europe to North America. Mol Phylogenet Evol 43:49–59. doi:10.1016/j.ympev.2006.07.022

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  • Lusini I, Velichkov I, Pollegioni P, Chiocchini F, Hinkov G, Zlatanov T, Cherubini M, Mattioni C (2014) Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: implications for conservation. Conserv Genet 15:283–293. doi:10.1007/s10592-013-0537-0

    Article  Google Scholar 

  • Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16:5259–5266. doi:10.1111/j.1365-294X.2007.03587.x

    Article  CAS  PubMed  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breed 11:127–136. doi:10.1023/a:1022456013692

    Article  CAS  Google Scholar 

  • Marinoni D, Akkak A, Beltramo C et al (2013) Genetic and morphological characterization of chestnut (Castanea sativa Mill.) germplasm in Piedmont (north-western Italy). Tree Genet Genomes 9:1017–1030. doi:10.1007/s11295-013-0613-0

    Article  Google Scholar 

  • Martin MA, Alvarez JB, Mattioni C, Cherubini M, Villani F, Martin LM (2009) Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeat (SSRs) markers. Ann Appl Biol 154:389–398. doi:10.1111/j.1744-7348.2008.00309.x

    Article  CAS  Google Scholar 

  • Martin MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genet Genomes 6:735–744. doi:10.1007/s11295-010-0287-9

    Article  Google Scholar 

  • Martin MA, Mattioni C, Molina J, Alvarez J, Cherubini M, Herrera M, Villani F, Martin L (2012) Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet Genomes 8:127–136. doi:10.1007/s11295-011-0427-x

    Article  Google Scholar 

  • Mattioni C, Cherubini M, Micheli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet Genomes 4:563–574. doi:10.1007/s11295-008-0132-6

    Article  Google Scholar 

  • Mattioni C, Martin MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100:951–961. doi:10.3732/ajb.1200194

    Article  PubMed  Google Scholar 

  • McCleary T, McAllister M, Coggeshall M, Romero-Severson J (2013) EST-SSR markers reveal synonymies, homonymies and relationships inconsistent with putative pedigrees in chestnut cultivars. Genet Resour Crop Evol 60:1209–1222. doi:10.1007/s10722-012-9912-9

    Article  Google Scholar 

  • Myles S, Boyko AR, Owens CL et al (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A 108:3530–3535. doi:10.1073/pnas.1009363108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122. doi:10.1038/nrg2931

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170. doi:10.1007/bf02300753

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pereira-Lorenzo S, Díaz-Hernández B, Ramos-Cabrer AM (2006a) Use of highly discriminating morphological characters and isozymes in the study of Spanish chestnut cultivars. J Am Soc Hortic Sci 131:770–779, doi:131/6/770.full

    CAS  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández MB, Ciordia-Ara M, Ríos-Mesa D (2006b) Chemical composition of chestnut cultivars from Spain. Sci Hortic 107:306–314. doi:10.1016/j.scienta.2005.08.008

    Article  CAS  Google Scholar 

  • Pereira-Lorenzo S, Costa R, Ramos-Cabrer AM, Ribeiro C, da Silva M, Manzano G, Barreneche T (2010a) Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 6:701–715. doi:10.1007/s11295-010-0285-y

    Article  Google Scholar 

  • Pereira-Lorenzo S, Díaz-Hernández B, Ramos-Cabrer A (2010b) Chestnut in Spain, from nut and timber production to industry. In: Bounous G (ed) I European Congress on chestnut–Castanea. ISHS Acta Horticulturae, Cuneo–Torino, pp 499–503

  • Pereira-Lorenzo S, Costa R, Ramos-Cabrer AM, Ciordia-Ara M, Ribeiro CAM, Borges O, Barreneche T (2011) Chestnut cultivar diversification process in the Iberian Peninsula, Canary Islands, and Azores. Genome 54:301–315. doi:10.1139/g10-122

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Carlson J, Curtu AL, Loustau ML, Plomion C, González-Rodríguez A, Sork V, Ducousso A (2013) Fagaceae trees as models to integrate ecology, evolution and genomics. New Phytol 197:369–371. doi:10.1111/nph.12089

    Article  PubMed  Google Scholar 

  • Pollegioni P, Woeste K, Olimpieri I, Marandola D, Cannata F, Emilia Malvolti M (2011) Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genet Genomes 7:707–723. doi:10.1007/s11295-011-0368-4

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

  • Pusadee T, Jamjod S, Chiang Y-C, Rerkasem B, Schaal BA (2009) Genetic structure and isolation by distance in a landrace of Thai rice. Proc Natl Acad Sci U S A 106:13880–13885. doi:10.1073/pnas.0906720106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramos-Cabrer AM, Pereira-Lorenzo S (2005) Genetic relationship between Castanea sativa Mill. trees from northwestern to south Spain based on morphological traits and isoenzymes. Genet Resour Crop Evol 52:879–890. doi:10.1007/s10722-003-6094-5

    Article  CAS  Google Scholar 

  • Rubio A (2009) Castanea sativa forests. In: Spain Government—MAGRAMA (ed) Ecological basis to preserve habitat types of EU interest in Spain. Ministerio de Agricultura, Alimentacion y Medio Ambiente, Madrid, pp 1–64

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

  • Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752. doi:10.1093/molbev/msp312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Wang Y, Kang M, Huang H (2008) Microsatellite loci transferability in chestnut. J Am Soc Hortic Sci 133:692–700

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641

    Article  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458. doi:10.1146/annurev.ecolsys.37.091305.110145

    Article  Google Scholar 

Download references

Acknowledgments

This research was financed by the Foundation Ciudad de la Energía (CIUDEN) from the Spanish Government. Julia Quintana was the recipient of a predoctoral fellowship from CIUDEN. We thank Dr. Pablo González-Jara for helpful comments and Begoña Prieto for excellent technical assistance. We are indebted to Drs. Avelino García and Luis del Riego for their advice and support throughout this work.

Data archiving statement

The allelic profiles for chestnut varieties have been deposited in the TreeGenes database with accession number TGDR034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Gomez.

Additional information

Communicated by A. Kremer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 38 kb)

ESM 2

(PDF 139 kb)

ESM 3

(PDF 36 kb)

ESM 4

(PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintana, J., Contreras, A., Merino, I. et al. Genetic characterization of chestnut (Castanea sativa Mill.) orchards and traditional nut varieties in El Bierzo, a glacial refuge and major cultivation site in northwestern Spain. Tree Genetics & Genomes 11, 0 (2015). https://doi.org/10.1007/s11295-014-0826-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0826-x

Keywords

Navigation