Skip to main content

Advertisement

Log in

Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The apple genome sequence and the availability of high-throughput genotyping technologies have initiated a new era where SNP markers are abundant across the whole genome. Genomic selection (GS) is a statistical approach that utilizes all available genome-wide markers simultaneously to estimate breeding values or total genetic values. For breeding programmes, GS is a promising alternative to the traditional marker-assisted selection for manipulating complex polygenic traits often controlled by many small-effect genes. Various factors, such as genetic architecture of selection traits, population size and structure, genetic evaluation systems, density of SNP markers and extent of linkage disequilibrium, have been shown to be the key drivers of the accuracy of GS. In this paper, we provide an overview of the status of these aspects in current apple-breeding programmes. Strategies for GS for fruit quality and disease resistance are discussed, and an update on an empirical genomic selection study in a New Zealand apple-breeding programme is provided, along with a foresight of expected accuracy from such selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138

    Article  PubMed  CAS  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. Proceedings 49th Annual Corn and Sorghum Research Conference, Washington, pp 250–265

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Article  Google Scholar 

  • Bink MCAM, Anderson AD, van de Weg WE, Thompson EA (2008) Comparison of marker-based pairwise relatedness estimators on a pedigreed plant population. Theor Appl Genet 117:843–855

    Article  PubMed  Google Scholar 

  • Broggini GAL, Bus VGM, Parravicini G, Kumar S, Groenwold R, Gessler C (2010) Genetic mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of Venturia inaequalis. Fungal Genet Bio 48:166–176

    Article  Google Scholar 

  • Browning SR, Browning BL (2010) High-Resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86:526–539

    Article  PubMed  CAS  Google Scholar 

  • Bus VGM, Alspach PA, Hofstee ME, Brewer LR (2002a) Genetic variability and preliminary heritability estimates of resistance to scab (Venturia inaequalis) in an apple genetics population. NZ J Crop Hortic Sci 30:83–92

    Article  Google Scholar 

  • Bus VGM, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002b) An update on apple scab resistance breeding in New Zealand. Acta Hortic 595:43–47

    Google Scholar 

  • Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton JM, Durel C-E, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236

    Article  Google Scholar 

  • Bus VGM, Esmenjaud D, Buck E, Laurens F (2009) Application of genetic markers in rosaceous crops. In: Folta KM, Gardiner SE (eds) Genetics and genomics of the rosaceae. Springer, New York, pp 563–600

    Chapter  Google Scholar 

  • Bus VGM, Bassett H, Bowatte D, Chagné D, Ranatunga C, Ulluwishewa D, Wiedow C, Gardiner S (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genet Genomes 6:477–487

    Article  Google Scholar 

  • Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Molec Breed 17:329–339

    Article  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, Parisi L, Durel C-E (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Drouet D, Denancé C, van de Weg WE, Brisset MN, Paulin JP, Durel CE (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135

    Article  PubMed  CAS  Google Scholar 

  • Calus M (2010) Genomic breeding value prediction: methods and procedures. Animal 4:157–164

    Article  CAS  Google Scholar 

  • Calus M, Veerkamp R (2007) Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. J Anim Breed Genet 124:362–368

    Article  PubMed  CAS  Google Scholar 

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99

    Article  PubMed  CAS  Google Scholar 

  • Cevik V, King GJ (2002) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105:346–354

    Article  PubMed  CAS  Google Scholar 

  • Cevik V, Ryder CD, Popovich A, Manning K, King GJ, Seymour G (2009) A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple (Malus domestica Borkh.). Tree Genet Genomes 6:271–279

    Article  Google Scholar 

  • Chagné D, Carlisle C, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212

    Article  PubMed  Google Scholar 

  • Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    Article  PubMed  Google Scholar 

  • Conner JP, Brown SK, Weeden NF (1998) Molecular marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035

    Article  CAS  Google Scholar 

  • Coster A, Bastiaansen JWM, Calus MPL, van Arendonk JAM, Bovenhuis H (2010) Sensitivity of methods for estimating breeding values using genetic markers to the number of QTL and distribution of QTL variance. Genet Sel Evol 42:9

    Article  PubMed  Google Scholar 

  • Crossa J, de los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H-J (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351

    Article  PubMed  CAS  Google Scholar 

  • de los Campos G, Gianola D, Allison DB (2010) Predicting genetic predisposition in humans: the promise of whole-genome markers. Nature Rev Genet 11:880–886

    Article  PubMed  Google Scholar 

  • Dekkers JCM (2004) Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. J Anim Sci 82(E. Suppl):E313–E328

    PubMed  Google Scholar 

  • Dunemann F, Urbanietz A, Gardiner S, Bassett H, Legg W, Rusholme R, Bus V, Ranatunga C (2004) Marker assisted selection for Pl1 powdery mildew resistance in apple—Old markers for a new resistance gene. Acta Hortic 663:757–762

    CAS  Google Scholar 

  • Dunemann F, Peil A, Urbanietz A, Garcia-Libreros T (2007) Mapping of the apple powdery mildew resistance gene Pl1 and its genetic association with an NBS-LRR candidate resistance gene. Plant Breed 126:476–481

    Article  CAS  Google Scholar 

  • Durel C-E, Laurens F, Fouillet A, Lespinasse Y (1998) Utilisation of pedigree information to estimate genetic parameters from large, unbalanced data sets in apple. Theor Appl Genet 96:1077–1085

    Article  Google Scholar 

  • Evans KM, James CM (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    PubMed  CAS  Google Scholar 

  • Fernando R, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Select Evol 21:467–477

    Article  Google Scholar 

  • Flint J, Mackay TFC (2009) Genetic architecture of quantitative traits in flies, mice and humans. Genome Res 19:723–733

    Article  PubMed  CAS  Google Scholar 

  • Gianola D, van Kaam J (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  Google Scholar 

  • Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183:347–363

    Article  PubMed  Google Scholar 

  • Groen AF, Smith C (1995) A stochastic simulation study of the efficiency of marker-assisted introgression in livestock. J Anim Breed Genet 112:161–170

    Article  Google Scholar 

  • Habier D, Fernando RL, Dekkers JC (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397

    PubMed  CAS  Google Scholar 

  • Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G (2010) The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 42:5

    Article  PubMed  Google Scholar 

  • Hampson CR, McNew R, Cline J, Embree C, Zandstra J, Wilson K (2009) Regional differences in performance of Canadian-bred apple cultivars and implications for breeding. Can J Plant Sci 89:81–91

    Article  Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    Article  CAS  Google Scholar 

  • Harris BL, Johnson DL, Spelman RJ (2008) Genomic selection in New Zealand and the implications for national genetic evaluation. Proceedings 36th ICAR Session, Niagara Falls (USA), pp 325–331

  • Hayes BJ, Goddard ME (2001) The distribution of the effects of genes affecting quantitative traits in livestock. Genet Sel Evol 33:209–229

    Article  PubMed  CAS  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci 92:433–443

    Article  PubMed  CAS  Google Scholar 

  • Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME (2010a) Genetic architecture of complex traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits. PLoS Genet 6:e1001139

    Article  PubMed  Google Scholar 

  • Hayes BJ, Daetwyler HD, Bowman P, Moser G, Tier B, Crump R, Khatkar M, Raadsma HW, Goddard ME (2010b) Accuracy of genomic selection: comparing theory and results. Proceedings of the Association for Advancement of Animal Breeding and Genetics, pp: 34–37

  • James CM, Clarke JB, Evans KM (2004) Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theor Appl Genet 110:175–181

    Article  PubMed  CAS  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Briefing Funct Genomics 9:166–177

    Article  CAS  Google Scholar 

  • Jung M, Ching A, Bhattramakki D, Dolan M, Tingey S, Morgante M, Rafalski A (2004) Linkage disequilibrium and sequence diversity in a 500-kbp region around the adh1 locus in elite maize germplasm. Theor Appl Genet 109:681–689

    Article  PubMed  CAS  Google Scholar 

  • Kellerhals M, Dolega E, Koller B, Gessler C (2000) Advances in marker-assisted apple breeding. Acta Hortic 538:535–540

    Google Scholar 

  • Kellerhals M, Kesper C, Koller B, Gessle C (2002) Breeding apples with durable disease resistance. In: Boos M (Ed.) Proceedings to the 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture, 4–7 Feb. 2002, Weinsberg, Germany, pp 5–10

  • Kenis K, Keulemans J, Davey M (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • Khan MA, Durel C-E, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577

    Article  PubMed  CAS  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel C-E, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084

    Article  Google Scholar 

  • King G, Lynn J, Dover CJ, Evans KM (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1227–1235

    Article  CAS  Google Scholar 

  • Kouassi AB, Durel C-E, Costa F, Tartarini S, van de Weg E, Evans K, Fernandez-Fernandez F, Govan C, Boudichevskaja A, Dunemann F, Antofie A, Lateur M, Stankiewicz-Kosyl M, Soska A, Tomala K, Lewandowski M, Rutkovski K, Zurawicz E, Guerra W, Laurens F (2009) Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes 5:659–672

    Article  Google Scholar 

  • Kumar S (2006) Correlation between clonal means and open-pollinated seedling progeny means, and its implications for radiata pine breeding strategy. Can J For Res 36:1968–1975

    Article  Google Scholar 

  • Kumar S, Volz RK, Alspach PA, Bus VGM (2010) Development of a recurrent apple-breeding programme in New Zealand: a synthesis of results, and a proposed revised breeding strategy. Euphytica 173:207–222

    Article  Google Scholar 

  • Kumar S, Volz RK, Weskett R (2011) Genetic architecture of fruit quality traits in Malus x domestica (Borkh.) compared between own-rooted seedlings and vegetative propagules on ‘M. 9’ rootstock. Tree Genet Genomes doi:10.1007/s11295-011-0396-0

  • Lapins KO (1976) Inheritance of compact growth type in apple. J Am Soc Hort Sci 101:133–135

    Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Can J For Res 28:276–283

    Article  Google Scholar 

  • Luby JJ, Alspach PA, Bus VGM, Oraguzie NC (2002) Field resistance to fire blight in a diverse apple (Malus sp.) germplasm collection. J Am Soc Hortic Sci 127:245–253

    Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Maliepaard C, Alston F, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Markussen T, Kruger J, Schmidt H, Dunemann F (1995) Identification of PCR-based markers linked to the powdery-mildew resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breed 114:530–534

    Article  CAS  Google Scholar 

  • Meuwissen THE, Goddard ME (1996) The use of marker haplotypes in animal breeding schemes. Genet Sel Evol 28:161–176

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Micheletti D, Troggio M, Baldi P, Costa F, Pindo M, Komjanc M, Malnoy M, Zarkikh A, Magnago P, Velasco R, Salvi S (2010) LD estimation and analysis of diversity in apple. Proceeding of Plant and Animal Genomes XVIII Conference, San Diego, W255

  • Micheletti D, Troggio M, Zharkikh A, Costa F, Malnoy M, Velasco R, Salvi S (2011) Genetic diversity of the genus Malus and implications for linkage mapping with SNPs. Tree Genet Genomes doi:10.1007/s11295-011-0380-8

  • Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hort Sci 78:279–287

    Article  CAS  Google Scholar 

  • Moser G, Tier B, Crump R, Khatkar M, Raadsma H (2009) A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet Sel Evol 41:56

    Article  PubMed  Google Scholar 

  • Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782

    Google Scholar 

  • Nybom N (1959) On the inheritance of acidity in cultivated apples. Heriditas 45:332–350

    Article  Google Scholar 

  • Ødegård J, Sonesson AK, Yazdi MH, Meuwissen THE (2009) Introgression of a major QTL from an inferior into a superior population using genomic selection. Genet Sel Evol 41:38

    Article  PubMed  Google Scholar 

  • Oraguzie NC, Hofstee ME, Brewer LR, Howard C (2001) Estimation of genetic parameters in a recurrent selection programme in apple. Euphytica 118:29–37

    Article  Google Scholar 

  • Oraguzie NC, Iwanami H, Soejima J, Harada T, Hall A (2004) Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus × domestica Borkh.). Theor Appl Genet 108:1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Peil A, Garcia T, Richter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3 detected by rapid genome scanning. Plant Breed 126:470–475

    Article  CAS  Google Scholar 

  • Peil A, Hanke M-V, Flachowsky H, Richter K, Garcia-Libreros T, Celton J-M, Gardiner S, Horner M, Bus V (2008) Confirmation of the fire blight QTL of Malus x robusta 5 on linkage group 3. Acta Hortic 793:297–303

    CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Plastow G, Sasaki S, Yu T-P, Deeb N, Prall G, Siggens K, Wilson E (2003) Practical application of DNA markers for genetic improvement, Proceedings of the 28th Annu. Mtg. Natl. Swine Improve. Fed. Iowa State University, Ames, pp 151–154

    Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Nat Acad Sci USA 98:11479–11484

    Article  PubMed  CAS  Google Scholar 

  • Rothschild MF, Soller M (1997) Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13–20

    Google Scholar 

  • Roux PMF, Khan MA, Broggini GAL, Duffy B, Gessler C, Patocchi A (2010) Mapping of quantitative trait loci for fire blight resistance in the apple cultivars ‘Florina’ and ‘Nova Easygro’. Genome 53:710–722

    Article  PubMed  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Article  Google Scholar 

  • Segura V, Durel C-E, Costes E (2009) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet Genomes 5:165–179

    Article  Google Scholar 

  • Stoeckli S, Mody K, Gessler C, Patocchi A, Jermini M, Dorn S (2008) QTL analysis for aphid resistance and growth traits in apple. Tree Genet Genomes 4:833–847

    Article  Google Scholar 

  • Sved JA (1971) Linkage disequilibrium and homozygosity of chro mosome segments in finite populations. Theor Popul Biol 2:125–141

    Article  PubMed  CAS  Google Scholar 

  • Thompson EA (2008) The IBD process along four chromosomes. Theor Popul Biol 73:369–373

    Article  PubMed  CAS  Google Scholar 

  • VanRaden PM (2007) Efficient estimation of breeding values from dense genomic data. J Dairy Sci 90(suppl 1):374–375

    Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited Review: Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Volz RK, Rikkerink E, Austin P, Lawrence T, Bus VGM (2009) “Fast Breeding” in apple: a strategy to accelerate introgression of new traits into elite germplasm. Acta Hortic 814:163–168

    Google Scholar 

  • Williams EB, Kuć J (1969) Resistance in Malus to Venturia inaequalis. Ann Rev Phytopathol 7:223–246

    Article  CAS  Google Scholar 

  • Xiang B, Li B (2003) Best linear unbiased prediction of clonal breeding values and genetic values from full-sib mating design. Can J For Res 33:2036–2043

    Article  Google Scholar 

  • Xu S (2003) Theoretical basis of the Beavis effect. Genetics 165:2259–2268

    PubMed  Google Scholar 

  • Xu SZ, Jia ZY (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Yang JA, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nature Genet 42:565–U131

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh.) \breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4:555–562

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Prevar™ Limited under contract from the New Zealand Foundation for Research, Science and Technology. Luis Gea and Ron Beatson made many useful comments on an earlier version of this manuscript. D Chagné acknowledge support by USDA’s National Institute of Food and Agriculture—Speciality Crop Research Initiative RosBREED (2009-51181-05808) and European Framework Program 7 FruitBreedomics projects. The contribution of M. Bink was carried out as part of the EU COST Action TD0801 “StatSeq” and the FruitBreedomics project funded by the Commission of the European Communities (Contract FP7-KBBE-2010-265582). It does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. Its content is the sole responsibility of the authors. We thank the anonymous reviewers and the Associate Editor for their suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar.

Additional information

Communicated by E. Dirlewanger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Bink, M.C.A.M., Volz, R.K. et al. Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genetics & Genomes 8, 1–14 (2012). https://doi.org/10.1007/s11295-011-0425-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0425-z

Keywords

Navigation