Skip to main content
Log in

Genetic diversity of the genus Malus and implications for linkage mapping with SNPs

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Knowledge about the sequence-based genetic diversity of a crop species is important in order to develop highly informative genotyping assays, which will eventually positively impact breeding practice. Diversity data were obtained from two pools of 185 and 75 accessions each, representing most of the species belonging to the genus Malus, by re-sequencing 27 gene-specific amplicons and by screening 237 Malus × domestica SNPs using the multiplex genotyping technology SNPlex™. Nucleotide diversity and insertion/deletion rates in M. × domestica were estimated as π = 0.0037 and 1/333 bp, respectively. The SNP frequency was estimated as 0.0194 (1 SNP/52 bp) while within a single apple cultivar an average of one SNP in every 455 bp was found. We also investigated transferability (T SNP) of the heterozygous state of SNPs across the species M. × domestica and the genus Malus. Raw re-sequencing showed that 12–15% of M. × domestica SNPs are transferable to a second M. × domestica cultivar, however T SNP rose to ∼41% with SNPs selected for high minor allele frequency. T SNP of chosen SNPs averaged ∼27% in the two M. × domestica-related species, Malus sieversii and Malus sylvestris, but was much lower in more distantly related species. On the basis of T SNP, simulations, and empirical results, we calculated that a close-design, multiplexed genotyping array with at least 2,000 SNPs is required for building a highly saturated linkage maps within any M. × domestica cross. The same array would gradually lose informativeness in increasingly phylogenetically distant Malus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bérard A, Le Paslier MC, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J 7:364–374

    Article  PubMed  Google Scholar 

  • Bhattramakki D, Dolan M, Hanafey M, Wineland R, Vaske D, Register JC 3rd, Tingey SV, Rafalski A (2002) Insertion-deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol Biol 48:539–547

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  PubMed  CAS  Google Scholar 

  • Brown SK (1992) Genetics of apple. Plant Breed Rev 9:333–366

    Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EH, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    Article  PubMed  Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arús P, Nuez F, Monforte AJ, Picó MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90

    Article  PubMed  Google Scholar 

  • Drost DR, Novaes E, Boaventura-Novaes C, Benedict CI, Brown RS, Yin T, Tuskan GA, Kirst M (2009) A microarray-based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence. Plant J 58:1054–1067

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Fan JB, Chee MS, Gunderson KL (2006) Highly parallel genomic assays. Nat Rev Genet 7:632–644

    Article  PubMed  CAS  Google Scholar 

  • Feng TT, Zhou ZQ, Tang JM, Cheng MH, Zhou SL (2007) ITS sequence variation supports the hybrid origin of Malus toringoides Hughes. Can J Bot 85:659–666

    Article  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QC (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173

    Article  PubMed  CAS  Google Scholar 

  • Gu CC, Yu K, Ketkar S, Templeton AR, Rao DC (2008) On transferability of genome-wide tagSNP. Genet Epidemiol 32:89–97

    Article  PubMed  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Han B, Xue Y (2003) Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol 6:134–138

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics, Fourth editionth edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Hosono S, Faruqi A, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsnore SF, Egholm M, Lasken R (2003) Unbiased whole-genome amplification directly from clinical samples. Genome Res 13:954–964

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  PubMed  CAS  Google Scholar 

  • Janick J, Cummins JV, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding. Wiley, New York, pp 1–66

    Google Scholar 

  • Jiang D, Ye Q, Wang F, Cao L (2009) The mining of Citrus EST-SNP and its application in cultivar discrimination. Agric Sci China 9:179–190

    Google Scholar 

  • Jones E, Chu WC, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalksi A, Smith OS, McMullen MD, Bezawada C, Warren L, Babayev J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mais L.) germplasm. Mol Breed 24:165–176

    Article  CAS  Google Scholar 

  • Juniper BE, Mabberley DJ (2006) The story of the apple. Timber Press, Inc., Portland

    Google Scholar 

  • Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ (2007) Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 177:457–468

    Article  PubMed  CAS  Google Scholar 

  • Kota R, Varshney RK, Prasad M, Zhang H, Stein N, Graner A (2008) EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct Integr Genomics 8:223–233

    Article  PubMed  CAS  Google Scholar 

  • Laframboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucl Acids Res 37:4181–4193

    Article  PubMed  CAS  Google Scholar 

  • Laurens F, Lespinasse Y, Fouillet A (2000) A new scab resistant apple: ‘Initial’. Acta Hort ISHS 538:707–710

    Google Scholar 

  • Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424

    Article  PubMed  Google Scholar 

  • Lima L, Gramacho K, Carels N, Novais R, Gaiotto F, Lopes U, Gesteira A, Zaidan H, Cascardo J, Pires J, Micheli F (2009) Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches’ broom disease in cacao. Gen Mol Res 8:799–808

    Article  CAS  Google Scholar 

  • Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782

    Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Pindo M, Vezzulli S, Coppola G, Cartwright DA, Zharkikh A, Velasco R, Troggio M (2008) SNP high-throughput screening in grapevine using the SNPlex genotyping system. BMC Plant Biol 8:12

    Article  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  PubMed  CAS  Google Scholar 

  • Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226:35–58

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132:365–386

    CAS  Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  CAS  Google Scholar 

  • Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Meth Mol Biol 132:115–130

    CAS  Google Scholar 

  • Syvänen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10

    Article  PubMed  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Tobler A, Short S, Andersen M, Paner T, Briggs J, Lambert S, Wu P, Wang Y, Spoonde A, Koehler R, Peyret N, Chen C, Broomer A, Ridzon D, Zhou H, Hoo B, Hayashibara K, Leong L, Ma C, Rosenblum B, Day J, Ziegle J, De La Vega F, Rhodes M, Hennessy K, Wenz H (2005) The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 16:398–406

    PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42(10):833–839. doi: 10.1038/ng.654

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma TM, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando MS, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Peer Y, Salamini F, Viola R (2007) High quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  Google Scholar 

  • Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, This P, Walker MA, Troggio M, Velasco R (2008) A SNP transferability survey within the genus Vitis. BMC Plant Biol 8:128

    Article  PubMed  Google Scholar 

  • Wu SB, Wirthensohn M, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru J, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267

    Article  PubMed  Google Scholar 

  • Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 4:e8451

    Article  PubMed  Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24:875–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Giuseppina Coppola, Pierluigi Magnago and Massimo Pindo for technical support. We also thank Phil Forsline, Valerio Gallerati, Anders S. Larsen and Andreas Peil for providing germplasm accessions. We thankfully acknowledge the financial support of Provincia Autonoma di Trento, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Troggio.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Suppl. Table 1

List of accessions (PDF 113 kb)

Suppl. Table 2

Details on gene sequenced (PDF 121 kb)

Suppl. Table 3

Details on T SNP (PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micheletti, D., Troggio, M., Zharkikh, A. et al. Genetic diversity of the genus Malus and implications for linkage mapping with SNPs. Tree Genetics & Genomes 7, 857–868 (2011). https://doi.org/10.1007/s11295-011-0380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0380-8

Keywords

Navigation