, Volume 2, Issue 3, pp 121-131
Date: 03 Mar 2006

Spatial structure and genetic diversity of three tropical tree species with different habitat preferences within a natural forest

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Analyses of the spatial distribution pattern, spatial genetic structure and genetic diversity were carried out using a 33-ha plot in a hill dipterocarp forest for three dipterocarps with different habitat preferences, i.e. Shorea curtisii on the ridges, Shorea leprosula in the valleys and Shorea macroptera both on the ridges and in the valleys. The significant spatial aggregation in small-diameter trees of all the three species was explained by limited seed dispersal. At the large-diameter trees, only S. macroptera showed random distribution and this might further prove that S. macroptera is habitat generalist, whilst S. curtisii and S. leprosula are habitat specific. The levels of genetic diversity estimated based on five microsatellite loci were high and comparable in all the three studied species. As the three studied species reproduced mainly through outcrossing, the observed high levels of genetic diversity might support the fact that the plant mating system can be used as guideline to infer the levels of genetic diversity, regardless of whether the species is habitat specific or habitat generalist. The lack of spatial genetic structure but significant aggregation in the small-diameter trees of all the three species might indicate limited seed dispersal but extensive pollen flow. Hence, if seed dispersal is restricted but pollen flow is extensive, significant spatial aggregation but no spatial genetic structure will be observed at the small-diameter trees, regardless of whether the species is habitat specific or habitat generalist. The inferred extensive pollen flow might indicate that energetic pollinators are involved in the pollination of Shorea species in the hill dipterocarp forests.